津波外力を受ける海岸林樹木の応答解析

鹿児島大学工学部 学生会員 〇坂井良輔 鹿児島大学大学院 学生会員 國生大樹 鹿児島大学大学院 正会員 浅野敏之

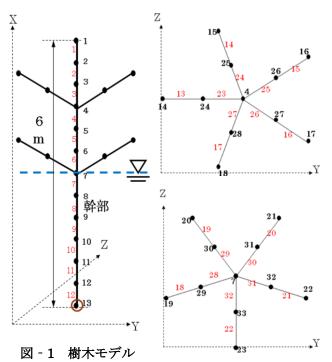
1. 研究の目的

海岸林は従来、防風林・防砂林として用いられて きたが, 近年は津波防潮施設としての効果が注目さ れている。しかし、津波が襲来すると倒木や折損が 生じ, 防災能力が減衰する恐れがあるため, 樹木の 各器官に、津波流体力がどのように作用するか明ら かにする必要がある。本研究では、樹木を多質点系 構造物として扱い、津波流体力を作用させたときの 応答を数値解析により考察した。

2. 解析の概要

2.1 樹木モデル

日本の海岸林の多くは、防風や防砂・防潮を目的 として育成され, 塩害や汚染に強いクロマツ林であ る。本研究では樹種はクロマツを想定し、典型的な 形状・寸法を持つ樹木モデルとして、図-1に示す樹 高 6.0m の 3 次元モデルを設定した。図中の太字の番 号は節点番号(節点数 33)、細字の番号は要素番号 (要素数 32) を表す。地面位置における節点 13 は 固定とし、節点4、節点7の位置からそれぞれ5本 ずつ枝が出るように設定した。また, 節点 14~23 (枝



の先端)の各節点には葉の重量として上載荷重 0.2kgf ずつを付加させた。本研究では、クロマツの乾燥後 の木材として公表されている値として、比重 0.57、 ヤング率 9.8Gpa を用いた。

2.2 入射波の計算

入射波の計算をする際に,以下に示す1次元浅水 方程式を用いた。

連続式
$$\frac{\partial h}{\partial t} + \frac{\partial M}{\partial x} = 0 \qquad \cdots (1)$$

運動方程式
$$\frac{\partial M}{\partial t} + \frac{\partial (uM)}{\partial x} = -gh\frac{\partial H}{\partial x} - \frac{gn^2u|u|}{h^{\frac{1}{3}}}$$

 \cdots (2)

h: 水深 M: x 軸方向の流量フラックス

g: 重力加速度 n:マニングの粗度係数

 $H: 水位 (= h + z_h, z_h: 底面高)$

解析において,変数を staggered に配置し, leap-frog 法によって計算を進めていく。

2.3 波による動的応答の解析

構造物の動的挙動の特性は構造物の固有周期と密 接に関係しているため、構造物の振動モードと固有周 波数を理解することが必要になる。そこで固有値解析 を行う。次に多質点構造物の運動基礎方程式を示す。

$$[M]\{\ddot{u}\}+[C]\{\dot{u}\}+[K]\{u\}=\{F\}$$
 ...(3)

左辺第2項の減衰項を除去すると次式となる。

$$[M]{\ddot{u}} + [K]{u} = 0 \qquad \cdots (4)$$

変位ベクトル{u}の一般解を次のように置く。

$$\{u\} = \{\Phi\}e^{i\omega t} \qquad \cdots (5)$$

(5) 式を(4) 式に代入すると次式が得られる。

$$\left(-\omega^2[M] + [K]\right)\left(\Phi\right) = \{0\} \qquad \cdots (6)$$

(6)式が $\{\Phi\}$ = $\{0\}$ 以外の解を得る条件は次式となる。

$$\left|-\omega^{2}[M]+[K]\right|=0 \qquad \cdots (7)$$

(7)式を解くことにより、固有値と固有円振動数が得 られる。葉による上載荷重を導入すると, M の要素 が大きくなり,固有振動数は低くなるので,津波外力 の周波数に近づいてくる。

モード合成法で得られる構造物の動的変位は $\{u(t)\} = [\Phi]\{q\} = \{\phi\}_1 q_1(t) + \{\phi\}_2 q_2(t) + \dots + \{\phi\}_N q_N(t)$

$$(u)_{j} - [\Psi]_{l}q_{j} - [\Psi]_{1}q_{1}(t) + [\Psi]_{2}q_{2}(t) + \cdots + [\Psi]_{N}q_{N}(t)$$

$$\cdots (8)$$

(3)式右辺の波力 $\{F\}$ については、浅水波理論を用い て水粒子の速度・加速度を求め、 それらを修正モリソ ン式に代入することにより評価した。

$${F} = [C_M] {\ddot{v}} - [C_m] {\ddot{u}} + [C_D] {\dot{v} - \dot{u} | (\dot{v} - \dot{u})} \cdots (9)$$

(9)式を(3)式に代入して得られた式を線形化すると 次式となる。

$$\left[\widetilde{M}\right]\left\{\widetilde{u}\right\} + \left[\widetilde{C}\right]\left\{\widetilde{u}\right\} + \left[K\right]\left\{u\right\} = \left[\widetilde{F}\right] \qquad \cdots (10)$$

ここで,(8)式を(10)式に代入し,転置行列 $\left[\Phi\right]^T$ を乗 じることで次式が得られる。

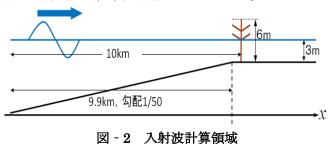
$$[I]\{\ddot{q}\} + [\cdot \cdot (2\beta_i \omega_i + C_D) \cdot \cdot]\{\dot{q}\} + [\cdot \cdot \cdot \omega_i^2 \cdot \cdot \cdot]\{q\}$$

$$= \left[\Phi\right]^T \left[C_M\right] \left\{\ddot{v}\right\} + \left[\Phi\right]^T \left|\hat{C}_D\right| \left\{\dot{v}\right\} \quad \cdots (11)$$

上式は、Newmark の β 法を用いて逐次積分によって 計算できる。

2.4 解析条件

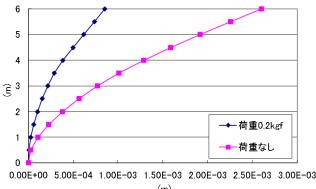
樹木モデルが 3m まで浸水した状態を考え、周期 300s, 波高 1.0m とし,変位・曲げ応力を求めた。 抗力係数は 1.0, 慣性係数は 2.0 とした。



3. 考察

図 - 3 は葉の重量を付加させた場合と付加させな い場合で、幹部における Z 軸方向最大変位、Y 軸ま わりの最大曲げ応力と高さの関係を表している。こ れらを比較すると、いずれも、荷重があるほうが値 が小さくなる。また、曲げ応力が局所的に大きな値 になっているのは、枝の付け根部分であり、枝から の応力を受けているためと考えられる。図 - 4 は,

葉の重量を付加させた場合の幹部におけるY軸方向 変位の時系列変化である。周期の短い振動がみられ, 葉による上載荷重の影響と考えられる。



0.00E+00 5.00E-04 1.00E-03 1.50E-03 2.00E-03 2.50E-03 3.00E-03

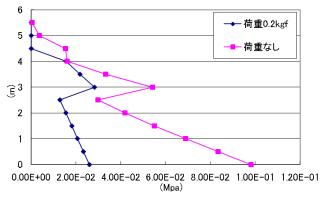


図-3 幹部における Z 軸方向最大変位(上段) Y軸まわりの最大曲げ応力(下段)

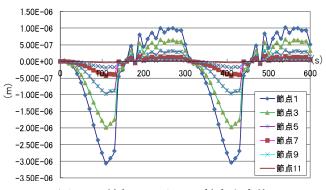


図-4 幹部における Y 軸方向変位

4. まとめ

クロマツの乾燥材としての曲げ強度は72.0~

91.1Mpa であり、解析で得られた値と比較すると折 損の可能性は低いと考えられる。ただし、今回は入 射波の波高を 1.0m としているため, さらに大きな波 高の津波を想定することで,折損の可能性が高まる と考えられる。また、今回の樹木モデルは、幹部の2 箇所から枝が5本ずつ出ているという簡素化したも のであり、ヤング率も生木に比べるとかなり乾燥し た状態のときの値であるため、今後はさらに現実的 な樹木モデルを設定して解析していく必要がある。