有孔板の引張試験におけるマルチロゼットひずみ計測

長崎大学	学生会員	○森﨑	雅俊	長崎大学	正会員	出水	享
福岡県	非会員	内野	正和	長崎大学	正会員	松田	浩

1. はじめに

光学的全視野計測法の一つにデジタル画像相関法(以下 DICM)がある.DICMは、測定対象物の変形前後の画像を デジタルカメラ等で計測し、その画像を数値解析すること で、測定対象物の変位・ひずみやその方向を求めることが できる手法である.筆者らは、数年前からDICMを用いた 各種研究を行っており、撮影条件や解析条件の影響により 計測値にバラツキが生じることを確認している.さらに、 そのバラツキを軽減させるため、ロゼット解析を複数回行 い、平均化することで計測精度が向上できるマルチロゼッ ト解析手法を開発している¹⁾.ここでは、2台のカメラを用 いたステレオ計測による3次元マルチロゼット解析の計測 精度検証結果について述べる.

2. マルチロゼット解析概要

DICM は測定対象物表面模様のランダム性を基にして、 測定対象物の変形前後のデジタル画像の輝度値分布から測 定対象物表面の変位量と変位方向を求める手法である. DICM によりひずみを求める方法として2点間の距離変化 を利用する方法がある. これは、ひずみを求める位置を中 心として,ある画素数だけ離れた2点の変形前後の変位量 と方向を求め、2点間の長さの変化からひずみを求める非常 にシンプルな解析法である.任意に解析点の距離(ゲージ 長に対応)を変えることができる特徴を持つ. しかしなが らこの方法ではひずみ量が小さい場合, 解析値がばらつく という傾向を示す. そのため円孔の応力集中部のような微 小領域のひずみ計測では解析誤差が大きくなり有効な方法 ではない.しかしながら応力集中の評価法として, DICMを 用いて円孔の中心点から点対称となる2点間の距離変化率 を利用する手法では、2点間距離を大きくとることができ、 誤差が小さくなる.以下に解析手順を示す.

- 図1に示すように円孔の中心から同心円状に解析点を 配置する.例えば図1では64点(64分割)配置して いる.
- ② 円孔中心から点対称になる2個の解析点を利用して変 形前後の距離変化率を求める.この場合,32個の計算 結果が得られる.
- ③ ②で求めた距離変化率の中で、x 軸から0°, 45°, 90° の角度に位置する組み合わせを用いてロゼット解析を 行い、最大と最小の距離変化率を求める.
- ④ ③の組み合わせ方を変えてロゼット解析を複数回行う.
- ⑤ 組み合わせの総数は32通りあり、平均化してバラツキ を少なくし、最大と最小の距離変化率を求める.

図1 解析点

図2 試験体概要

写真1 円孔付近拡大図

写真2 計測状況

3. 試験概要

試験体概要を図2に示す.本試験では,写真1のように 直径15mmの円孔を有する板厚2.3mmの鋼板で,引張り試 験を行った. DICM で計測のため,試験体の表面に白色の スプレーで下地を塗布し,次に下地の上から黒色のスプレ ーでランダムパターンを塗布した.また有孔板との比較の ため,試験片の寸法は同じで円孔を有しない試験片を用い て,有孔板と同じ荷重条件で引張載荷を行った.

載荷は荷重制御とし、荷重を3.71kN, 6.86kN となるよう に載荷し、その後、荷重を一定に保った. DICM の撮影に 関しては、2 台の CCD カメラを用いた.2 台のカメラの中 心から約 575mm の距離から撮影を行い、シャッター速度は 25ms とした.この条件下では、撮影解像度(mm/pixel)は約 0.032 mm/pixel となるため、例えば5mm ゲージは、約156pixel で構成されることになる.また、試験体表面の明るさを一 定に保つため、LED ライトを2つ使用した.計測状況を写 真2に示す.

計測は、各荷重においてカメラで 50 枚ずつ計測を行い, 各荷重の画像に加算平均処理を行った.加算平均処理を行 うことで,ひずみの計測精度が向上することが確認されて いるためである²⁾.加算平均後の画像を用いてマルチロゼッ ト解析によりひずみを算出した.マルチロゼット解析の結 果と比較するために FEM を行った.FEM に使用した材料 パラメーターは、事前に試験で求めた弾性係数 200GPa,ポ アソン比 0.3 とした.

4. 試験結果

マルチロゼット解析及び FEM により得られた結果を図 3、 図 4 に示す.図 3(a)より,最大主ひずみは円孔近傍で最大約 60μ の誤差が見られ,それ以外の区間の誤差は約 20μ であ った.最小主ひずみは,円孔近傍で約 40μ の誤差が見られ, それ以外の区間では誤差はほとんど見られなかった.図 3(b)より,誤差は見られずほぼ 0°となった.図 4(a)より, 最大主ひずみは円孔近傍で約 50μ の誤差が見られ,それ以 外の区間の誤差は約 30μ であった.最小主ひずみは円孔近 傍で約 30μ の誤差が見られ,それ以外の区間では誤差はほ とんど見られなかった.図 4(b)より,誤差は見られずほぼ 0°となった.また,図 3(a)と図 4(a)のどちらも,円孔近傍 の最大主ひずみは円孔を有しない場合の最大主ひずみの約 3 倍の値となった.図 3(b),図 4(b)より,均等に載荷されて いることが確認できる.

以上より、マルチロゼット解析の値と、FEM の値がほぼ 一致したことから、応力勾配のある区間や、低ひずみ域に おいてもマルチロゼット解析は精度よくひずみを計測でき ることが確認できた.

5. まとめ

- マルチロゼット解析は精度よくひずみ計測ができること が確認された。
- ・マルチロゼット解析は低ひずみ域においても精度よくひ ずみを計測できることが確認された.

図 3(a) 3.71kN 載荷時の最大・最小主ひずみ

図 4(b) 6.86kN 時の最大主ひずみ方向の角度

6. 参考文献

- 1) 内野正和,岡本卓慈,伊藤幸広,松田浩,デジタル画 像相関法を用いたマルチロゼット解析法の検討,日本 実験力学会講演論文集,Vol8, pp134-137, 2008
- 2) 出水享,板井達志,藤野義裕,山下務,松田浩,撮影・ 解析条件がデジタル画像相関法のひずみ計測精度に及 ぼす影響,長崎大学工学部研究報告,41(77), pp.45-52;2011.7