降雨による粘着力の低下を考慮した斜面崩壊危険度評価

九州大学大学院	学生会員C	大久伢	民佳美	九州大学大学院	フェロー	善	功企
九州大学大学院	正会員	陳	光斉	九州大学大学院	正会員	笠間	清伸

1. 背景および目的

降雨による斜面崩壊は、地盤重量の増加や地盤の強度低下等が複合して発生するため、その発生予測は地盤工 学的に難しい問題である.特に、サクションによる見かけの粘着力の低減は、地盤の不安定化に大きな影響を及 ぼすと考えられるが、この要因を考慮した危険度算定手法は少ないのが現状である.また、極限平衡法や有限要 素法等は計算負荷が大きい、パラメータの同定が難しい等の問題点があり、広域的にリアルタイムで斜面崩壊の 発生を予測する手法としては適さない.そこで、本文では、斜面崩壊の発生を予測する手法の確立を目的とし、 地質や地形等の素因と降雨による影響を考慮した、簡便な力学的安定解析によるリアルタイム斜面崩壊危険度算 定手法の提案および有用性の検証を行った.

2 危険度算定手法

図-1 に、斜面崩壊危険度算定のフローを示す.対象斜面を 10m 四方でメッシュ化し、地形を考慮して水の流れを考えた布川ら¹⁾の手法をもとに、各メッシュの水分量を算出し、表層土内の水分の増加を水分増加比*m*として表した.水分増加比*m*は、降雨浸透による初期状態からの地盤内空隙の減少量を初期状態の空隙量で除した値として定義した.

 $F_{s} = \frac{c' + C_{s} + N \cdot \tan \phi'}{W \cos \beta} (m < m_{0}) \quad (1) \quad F_{s} = \frac{c' + N' \cdot \tan \phi'}{W' \cos \beta + F'} (m \ge m_{0}) \quad (2)$ ここで, c'は有効粘着力, \phi'は内部摩擦角, W およびW'はすべり面上の土の自 重, N およびN'はすべり面に対する垂直応力, F'は透水力, βは斜面角度であ る.また, C_sはサクションによる見かけの粘着力で, Montrasio ら²⁾が飽和度と の関係に基づき提案した式(3)で算出し, 基岩面の飽和度は初期飽和度 S_{r0} とし, 湿潤層底面の飽和度 S_r は式(4)で定義した.

$$C_{S} = A \cdot S_{r} \cdot (1 - S_{r})^{2}$$
(3) $S_{r} = \frac{m}{m_{0}} + S_{r0} \cdot \left(1 - \frac{m}{m_{0}}\right)^{2}$ (4)

ここで、Aおよび λ は実験により求められたパラメータ²⁾で、 α は飽和度変化を 表すパラメータである.

本手法を 2009 年 7 月の九州北部豪雨により斜面崩壊が発生した福岡県福智町 の実斜面へ適用し,有用性の検証を行った. **表-1** に,解析に用いたパラメータ を示す.地質データは現地の調査結果³から決定し,降雨データは対象斜面から 最も近いアメダスの観測値を用いた.

図-2 斜面表層のモデル

表-1 解析に用いたパラメータ

表層土厚 H_c (m)	3.00
間隙率 n	0.33
土粒子比重 G_s	2.82
内部摩擦角 ∅′ (゚)	36.9
有効粘着力 c' (kPa)	8.00
初期飽和度 S_{ro}	0.80
Α	80.00
λ	0.40
α	1.00
r	0.10
水みちの平均深さ H_P (m)	1.00
m_0	0.74

3. 解析結果

2009 年 7 月 24 日 18 時, 20 時および 21 時における対象斜面の 水分増加比mの分布を図-3 に,安全率 F_s の分布を図-4 に示す. 崩壊頂部の位置も合わせて示した.時間の経過とともに,水分増 加比mは増加し,安全率 F_s は減少した. 18 時において,大部分の メッシュで水分増加比mは 0.2 以下,安全率 F_s は 2.4 以上をとり, 安定であったことがわかる. 20 時には,4 つのメッシュにおいて 水分増加比mが 0.9 を越えた.これらのメッシュは集水性により雨 水が集中するメッシュであると考えられる.21 時になると,広範 囲にわたり水分増加比mが 0.9 を越え,安全率 F_s が1以下となり 不安定化したと考えられる.

図-5 に、24 日から 25 日かけての時間雨量と崩壊頂部のメッシュの安全率 *F_s*の変動を示す.21 時に、安全率は 最小となった.このときの安全率 *F_s*は1以下であり、斜面崩壊の発生した21時40分頃とほぼ一致したことから、 本手法は対象斜面において斜面崩壊の発生予測に有用であると考えられる.

4. 結論

本文では、地形や地質等の素因と降雨を考慮した簡便な力学的安定計算によるリアルタイム斜面崩壊危険度算 定手法の提案および実斜面への適用による有用性の検証を行った。斜面崩壊が発生した時間と崩壊頂部の安全率 *Fs*が1以下となった時間が一致したことから、本手法は対象斜面において斜面崩壊の発生予測に有用であると考 えられる。今後、様々な斜面に対して本手法の有用性の検証を行うとともに、各パラメータが解析結果に与える 影響を明らかにし、具体的なパラメータ決定の方法を検討する必要がある。

参考文献 1) 布川修, 杉山友康, 太田直之: 地形を考慮した斜面表層部の地下水変動予測モデル, 鉄道総研報告, Vol.22, No.1, pp.23-28, 2008. 2) L.Montrasio and R.Valentino: A model for triggering mechanisms of shallow landslides, *Nat. Hazards Earth Syst. Sci.*, No.8, pp.1149-1159, 2008. 3) 地盤工学会九州北部土砂災害調査団: 平成21年7月九州北部豪雨による土砂災害調査報告書, 2010.