九州大学大学院 学生会員 〇宗本 理 九州大学大学院 正会員 園田 佳巨

1. 緒言

近年,土木工学の分野における構造設計は,性能照査型に 移行しつつある.それにともない,想定以上の衝撃力が作用 する可能性があるロックシェッドのような防護構造物につい て,構造物の限界状態を定義した上でその耐衝撃性能を明確 にする必要がある.これまで,RC はりを主な対象として構 造物の衝撃挙動を評価できる解析手法の確立を目的とした検 討が数多く行われてきた.しかし,衝撃現象が複雑なため, 設計衝撃荷重,構造物の材料特性,さらに解析手法などに関 して,必ずしも共通の見解が得られているわけではない.そ こで本研究では,1質点系バネモデル,骨組要素モデル,FEM の3種類の解析モデルを用いた衝撃挙動解析を行い,限界状 態を知る基本的かつ重要な照査項目である衝撃応答変位を精 度良く評価するための留意点について考察した.

2. 解析概要

2.1 解析対象および解析条件

本解析の対象は,過去に土木学会の委員会活動として行われた RC はりの衝撃実験で,両端を単純支持された矩形断面 RC はりのスパン中央部に,質量 300kg の先端曲率がほぼ平らな重錘を 4m/s の速度で自由落下させた重錘落下実験である.解析対象となる矩形断面 RC はりの断面形状と配筋状況を図-1 に示す.なお,1 質点系バネモデルと骨組要素モデルの解析では,衝突物のモデル化は行わず,図-2 に示すような二等辺三角形パルス荷重を直接与えた.

2.2 1 質点系解析および骨組要素解析

2つの解析で用いた復元力特性について、Q - x、 $M - \varphi$ 関係を図-3に示す.ここで、kは等価ばね定数、 φ はたわみ角、 *I*は断面 2 次モーメントである.ここでは、部材の全体剛性 に関する基本的な仮定が変位応答に与える影響について検証 するため、降伏耐力に達した後の塑性剛性を初期剛性の 1/100、 1/50、1/10 の 3 種類、さらに除荷剛性を初期剛性、初期剛性 の 50%、30%の 3 種類の値を簡易に設定している.

2.3 3次元 FEM 解析

コンクリートと重錘には8積分点を有するソリッド要素, 鉄筋には1積分点を有するトラス要素を適用し,鉄筋要素と コンクリート要素の間には節点を共有する完全付着条件を仮 定した.重錘および鉄筋とコンクリートの応力-ひずみ関係

図-3 復元力特性(1 質点系バネ・骨組要素)

(a) 重錘および鉄筋
(b) コンクリート
図-4 応カーひずみ関係(3 次元 FEM)

表 - 1 各	種材	料定	数
---------	----	----	---

	鉄筋	コンクリート
弾性係数 <i>E</i> (GPa)	210	21
ポアソン比 Vs	0.30	0.2
密度 ρ(g/cm3)	7.85	2.35
降伏強度 σ _y (MPa)	300	-
圧縮強度 f'(MPa)	-	30
引張強度 f(Mpa)	-	3

を図-4 に示す. 重錘および鉄筋には, ミーゼスの降伏条件をベ ースとした簡易なバイリニア型の等方硬化則(硬化係数は初期剛 性の 1/100)を仮定した. 一方, コンクリートには, 圧縮域では 前述の重錘および鉄筋と同様に硬化係数を初期剛性の 1/100 と設 定し,引張域は最大引張強度に達した後の軟化勾配に完全弾塑性, 弾性係数の 1/100, カットオフの 3 種類の値を設定した. 具体的 なコンクリートと鉄筋の材料定数は**表-1**に示す.

3. 解析結果および考察

各3種類の塑性剛性と除荷剛性の影響について、それぞれ1質 点系バネモデル, 骨組要素モデルの変位応答波形を図-5 の(a)と (b)に示す. さらに、3次元 FEM 解析における各軟化勾配による変 位応答波形および実験値を図-5(c)に示す.まず(a)と(b)の図より, 塑性剛性が大きく?小さくなるにつれて最大応答変位が大きくな り、除荷剛性が小さくなるにつれて、最大応答変位に達した後の 自由振動の振幅が大きくなると同時に残留変位が小さくなること が確認できた. さらに, (c)の図から引張軟化勾配が大きくなる(引 張破壊に関するじん性が低下する)につれて,最大応答変位や残 留変位が大きくなる傾向が明瞭に認められた.これは、軟化勾配 の変化によって、コンクリートの引張破壊(応力がゼロまで低下) に消費されるエネルギー量が変化するためである.また,実験値 と比較すると、要素寸法と破壊エネルギーの関係を考慮した軟化 勾配を用いたモデルが実験値に最も近いことがわかった.1 質点 系バネモデルと骨組要素モデルには、実験データを近似した衝撃 力波形を入力荷重として与えているが、最大変位は実験値よりか なり大きく1質点系>骨組要素解析>FEM 解析の順となった.こ の原因として、1 質点系モデルでは高次モードの影響が考慮され ていないこと(1次,3次,5次モードの各固有周期は22.4ms,9.3ms, 6.1ms), 骨組要素解析でも離散化の程度が不足していたことなど が原因として挙げられる.次に,3次元 FEM 解析において3種類 の引張軟化勾配別に最大変位発生時にひび割れが予想される領域

(引張破壊の閾値を超えた)を明示するため、最大主ひずみ分布 をベクトル表示した結果を図-6 に示す.これらの図から、引張 軟化勾配が大きくなるにつれて、引張破壊に要するエネルギーが 小さくなることから、ひび割れ領域(最大主ひずみをベクトル表 示した範囲)が拡大することが確認できる.

4. 結言および今後の課題

本研究では,離散化レベルが異なる各種解析で衝撃応答変位を 精度良く評価するための留意点について,実験結果との比較を交 えて考察を行った.今後,数値解析による RC はりの耐衝撃性能 照査法の確立に向けて,質点系モデルによる照査の限界,骨組解 析におけるせん断変形の考慮,3次元 FEM 解析におけるひび割れ の位置や範囲の把握方法等について検討予定である.

図-6 最大主ひずみ分布