再生石膏添加 PS 灰の地盤改良材としての力学・化学的特性評価

長崎大学工学部 学生会員 原田 拓 長崎大学大学院 フェロー会員 棚橋 由彦 長崎大学工学部 正会員 蒋 宇静 長崎大学工学部 正会員 杉本 知史 長崎大学大学院 学生会員 真田 伸行

1.はじめに

現在日本では、古紙の再生に伴って発生する産業廃棄物「製紙スラッジ」(以下PS灰)が年間400万トン以上発生している。このうち一部は有効利用されているが、多くは、有償で焼却・埋立処分を行っている¹⁾。このような処理にかかる費用の問題や、環境問題への意識の高まりから、PS灰に半水石膏・フライアッシュ・生石灰を混合することで再生石膏添加PS灰(以下GP灰)が開発された。本研究では建設発生土であり、九州地区に多く存在する佐賀粘土と有明粘土(以下蓮池粘土)に、このGP灰を混合することで新地盤材を開発改良し、産業廃棄物の有効利用を目指すものである。 表-1 GP 灰の成分表

2. 改良地盤材に関わる各種材料特性

今回地盤改良材として使用した GP 灰は PS 灰に生石灰・ 半水石膏・フライアッシュを、それぞれに使用目的を持た せて、一定の割合で混合したものである。

表-1 に使用目的と混合割合を、表-2 に本研究で使用した 高含水比粘性土である有明粘土、蓮池粘土の物性値を示す。 また、表-3 に既往の重金属溶出試験の結果²⁾を示す。有害 重金属等環境に影響を及ぼす物質の含有量が、環境基準値 未満であることが確認済みである。

3. 改良土の力学的特性評価

3.1 試験概要

GP灰と発生土を混合攪拌し、高さ 10cm、直径 5cmのモールドで供試体を作成して規定の材齢において一軸圧縮試験を行う。供試体を作成した後は、温度 25 、湿度 90%の恒湿槽において養生を行う。また、本改良地盤材は、一般盛土材料としての使用を考えており、一般の粘土の場合、コーン指数 (qc) と一軸圧縮強度 (qu) の間にはqc 5·quという関係がある。盛土としての適用用途標準を満たす第 3 種建設発生土として求められるコーン指数は 400 kN/m²であるため、本研究での目標強度は 100kPaと定めた。また、今回使用した発生土の自然含水比は 180%前後であったため、固化材を混合する前に、佐賀粘土と有明粘土の含水比を180%に調節して、固化材を混合した。このときの添加量、養生日数の試験ケースは表-4 のように設定した。このとき、GP灰 (GP)を蓮池粘土 (H)に添加するケースをGPAとする。灰(GP)を有明粘土(A)に添加するケースをGPAとする。

 成分
 割合(%)
 使用目的

 PS 灰(紙の焼却残渣)
 60

 生石灰
 15

 半水石膏
 15
 固化

 フライアッシュ
 10
 吸着効果

表-2 対象十の物性値

物性	試験項目	有明粘土	蓮池粘土				
土粒子の密度 (g/m³)		2.59	2.52				
自然含	水比(%)	187	172				
粒度 分布	砂(%)	16	11				
	シルト(%)	40	39				
	粘土(%)	44	50				
液性限界(%)		181.4	115.5				
塑性网	艮界(%)	65.2	44.1				
塩化物·	イオン濃度	26600	66.6				
(mg/kg)		20000	00.0				

表-3 重金属溶出試験結果2)

	Cr ⁶⁺	Cd	Pb	As	Se	T-Hg	F	В
環境基準値	0	0.01	0.05	0.01	0.01	0	0.8	1
有明粘土	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	0.5	0.45
佐賀粘土	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
(単位:mg/l、N.D.:検出せず)								

表-4 試験ケース

F. H-0/3X							
Case	建設	固化材	添加量	材齢			
	発生土	四11.47	(kg/m^3)	(日)			
GPH	蓮池						
	粘土	CD to	50,100	1 2 7 20			
GPA	有明	GP 灰	200,300	1,3,7,28			
	粘土						

3.2 実験結果と考察

今回の実験結果では、すべてのケースで、蓮池粘土より有 明粘土で大きな強度を得た。これは、蓮池粘土に含まれる有 機物がフライアッシュやPS灰の水和反応を阻害し、強度の発 現に悪影響を及ぼすためであると推測される³⁾。図 - 1(a) と 図 - 1(b)に示される添加量と一軸圧縮強度の関係のグラフよ リ、GP灰添加量 50kg/m³と 100kg/m³では、養生日数によって 大きな強度の差は見られなかったが、添加量が 200kg/m³や 300kg/m3になると、養生日数1~7の間に、大きな強度の増加 が確認できた。この結果から、180%という高含水比の条件で、 GP灰が固化材として盛土としての一般目標強度 100kPaを満 たすためには、添加量 100 kg/m3以上必要であることが分かっ た。また、図-2(a)と図-2(b)に示される養生日数と一軸圧縮強 度の関係より、添加量が 50kg/m³~100kg/m³であれば、養生 日数を長くしても、大幅な強度の増加は得られないことが分 かった。これは、添加量が少ないため、発生土中の固結機能 に対する余剰水分が多くなり、水和反応が短い期間で完結し てしまうためと考えられる。上記のように添加量 100kg/m³以 上の条件であれば、有明粘土で養生3日、蓮池粘土では養生 7日で盛土材としての目標強度 100kPaを満たすことが分かっ た。今回の結果より、養生3日から養生7日で急激に強度が 上昇しており、この期間で水和反応が急速に進行していると 考えられる。

4.おわりに

一軸圧縮試験の結果、GP 灰は、使用した建設発生土を固 化する作用があり、その効果は、添加量が大きく、養生日数 を長くするに伴い強度発現が大きくなることが分かる。

今後は、重金属溶出試験と pH 試験を行い、有害重金属等環境に及ぼす物質の含有量を調べ、実地盤での使用可能性を確かめていく予定である。

謝辞:本研究の遂行にあたり、(株)環境科学上川畑照実氏、 佐賀中部農林事務所大串秀治氏他関係者のご協力に謝意を表 します。

【参考文献】

 社団法人愛媛県紙パルプ工業会:製紙スラッジ再資源化技術開発 http://www.shikoku.meti.go.jp./soshiki/skh_b7/1_sesaku/040416/info/s eishisurajji.pdf#search='製紙スラッジ

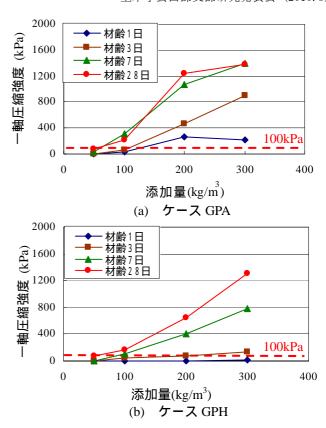


図-1 添加量と一軸圧縮強度の関係

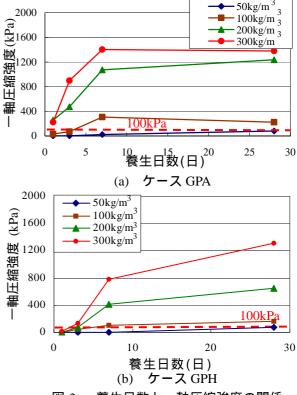


図-2 養生日数と一軸圧縮強度の関係

- 2) 吉田友則,棚橋由彦,蒋宇静,杉本知史,鈴木良太:再生石膏中性固化材の地盤改良材としての適用性評価,土木学会第64回年次学術講演会概要集(CD-ROM),3-459,pp.917-918,福岡(2009.9)
- 3) 日本工営株式会社:高有機質地盤に対するセメント安定処理効果: http://www.n-koei.co.jp/