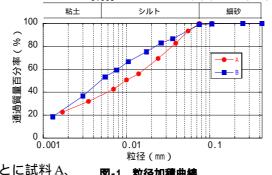
脱水ケーキを用いた新しい遮水材料の法面への適応性の検討

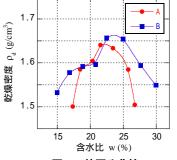
福岡大学 学生会員 黒岩兼一 末竹良

正会員 福岡大学 佐藤研一

(株)アステック 森本辰雄 武田都

1.はじめに 著者らは ^{1) 2)}砕石場の汚濁処理に伴い発生する脱水ケーキに重金属捕集能を有する添加剤を配合す ることで、処分場の二重遮水工における粘土系遮水材料の開発を行っている。これまでの研究では、産地が異な る脱水ケーキを使用し、透水係数、トラフィカビィティーなど遮水材料としての要求性能を満たすことを確認し ている 1)。しかしながら、遮水材料を実際に処分場の法面に施工するにあたって、その安定性を検討する必要があ る。そこで、遮水材料に対し一面せん断試験を実施し、材料の強度定数を求め、処分場斜面部における安定性の 検討を行った結果について考察する。


2.実験概要


2-1 実験試料 本研究で用いた、産地の異な る脱水ケーキに重金属捕集材 1)を混合させた 遮水材料 A、B の物理特性を表-1 に示す。

土粒子の密度は大きな差は無く、両試 料共に低塑性の試料である。図-1 にそ れぞれの粒度分布を示す。試料は、細 粒分を多く含み、シルト、粘土で構成 されている。図-2に締固め曲線を示す。 遮水材料は同程度の締固め特性を示 していることがわかる。

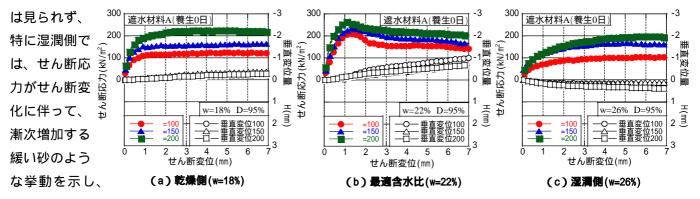
表-1 物理特性

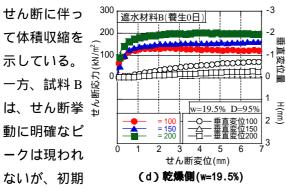
	土粒子の密度 ρ _s (g/cm³)	液性限界 W _L (%)	塑性限界 W _P (%)	塑性指数 I _P	最適含水比 W _{opt} (%)	最大乾燥密度 ρ _{dmax} (g/cm³)
遮水材料A	2.631	39.9	25.4	14.5	22.0	1.636
遮水材料B	2.946	42.2	28.2	14.0	23.5	1.664
0.005		0.075	0 405			

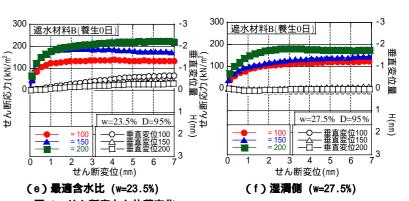
2-2検討内容 図-2の締固め曲線をもとに試料 A、

図-1 粒径加積曲線

図-2 締固め曲線


B において、最適含水比 w_{opt} 及び湿潤側 (w_{opt}=+4%) と乾燥側 (w_{opt}=-4%) かつ、締固め度を D(_{dmax}/ _d)=95%とし一面せん断 試験を行った。さらに、日数の経過に伴う影響を検討するため、 養生日数を7日とした。一面せん断試験を行うにあたって、垂直


表-2 実験条件 含水比w(%) 締固め度D(%) 養生日数(日) 試料 乾燥側(-4%) A 0 最適含水比 95 В 7 湿潤側(+4%)


荷重 v を 100、150、200kPa と設定し、せん断変位が 7mm まで達するまで実験を行った。表-2 に実験条件を示す。

3.実験結果

3-1. 一面せん断試験結果 図-3の(a)~(f)に遮水材料 A、B の養生 0 日における一面せん断試験結果を示す。各含 水比において D=95%の密度で締固められたのも関わらず、せん断特性は材料の初期含水比の影響を顕著に受けて いることが分かる。試料 A の最適含水比の試料は、せん断応力に明確なピークが見られ、せん断に伴う体積膨張 も著しいことが分かる。これに対し乾燥側と湿潤側に4%含水比を変化させたものは、せん断応力に明確なピーク

含水比の違いによる体積変化は、試料 A と同様な 挙動を示した。このように遮水材料のせん断特性は、 施工締固め時の初期含水比の影響を受けやすく、施工 後の材料の安定性が異なることが分かる。次に、**図-4** の(a)~(d)に一面せん断試験から得られた最大せん断 応力と垂直応力の関係を示す。これらの結果から、各 材料の強度定数 c、 を求めた結果を表-3に示す。図、 表より初期含水比の影響が強度定数にも現われ、最適 含水比により締固められた材料が他の二つと異なった 値を示し、大きな粘着力を有していることが分かる。 また、両試料とも養生に伴って固結効果により粘着力 が増加していることも分かる。

3-2. **養生による安全率の影響** 最終処分場の底部遮水工の法面勾配は一般的に 2.0 以下 ³⁾となっている。今回は、 を勾配 2.0 とし、H を規定の層厚 0.5m を用いて法面の安全率の算出を行った。また、一般に斜面・盛土の場合必要とされる安全率は 1.2~1.3 である。

図-5 に養生 7 日おける遮水材料の強度定数を用いて 算出した安全率と初期含水比の関係を示す。本研究 の遮水材料は、これまでの研究で養生 7 日以降の強 度が安定していることが確認されている²⁾。ここで、 今回の計算では、材料飽和に伴う粘着力の低下はな いものとして計算を行っている。両試料共に法面安 全率は、最適含水比において一番高い値を得ている。 また、法面表面まで地下水上昇により飽和した場合 の安全率も不飽和時に比べると若干低下するが、法 面で必要な安全率は満たしている。これは遮水材料 の持つ大きな粘着力 c が影響している。

4.まとめ 本研究で用いた遮水材料は、締固め時の初期含水 比の変化が強度定数に大きく影響することが示された。また、

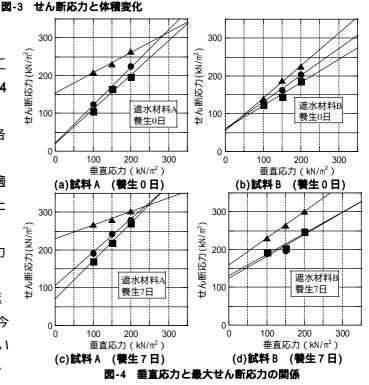
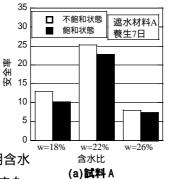



表-3 粘着力と内部摩擦角

		0日		7日		
	含水比	粘着力	内部摩擦角	含水比	粘着力	内部摩擦角
	w(%)	с		w(%)	С	
	18.0	20.7	45.0	18	105.5	41.3
遮水材料A	22.0	153.0	28.4	22	229.0	19.8
	26.0	19.2	43.2	26	70.0	45.0
遮水材料B	19.5	58.3	35.3	19.5	124.0	30.1
	23.5	54.7	40.7	23.5	158.5	35.4
	27.5	59.8	31.4	27.5	130.3	29.2

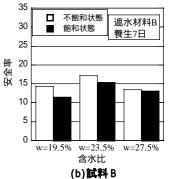


図-5 養生日数と安全率の関係

今回行った安全率の検討では、処分場の法面として十分に安全であることが示された。

【参考文献】1) 武田都:砕石場の脱水ケーキを用いた重金属捕集能を有する遮水材料に関する基礎的研究 平成 19 年度 福岡大学大学院修士論文.2) 末竹良:重金属捕集能を有する遮水材料に関する基礎的研究,第8回地盤改良シンポジウム論文集 pp.71-74,2008.3) 日本道路協会:道路土光-施工指針,pp 47,1986.