九州大学工学部	学生員	扇塚	修平	九州大学大学院	正会員	矢野真	〔一郎
九州大学大学院	正会員	齋田	倫範	九州大学大学院	学生員	田井	明
九州大学大学院	学生員	志岐	慎介	九州大学大学院	フェロー	小松	利光

1.はじめに

近年の有明海では大規模なノリの色落ちなどの環境 異変が問題となっているが、その主要な原因の1つが赤 潮の発生であると考えられている.また,奥部での大規 模な貧酸素水塊の発生も確認されている .有明海には筑 後川をはじめとする複数の河川(8つの一級河川)が流 入し、これらの現象に対して河川からの淡水流入とそれ による運ばれる物質(有機物,栄養塩類,土砂など)の 影響が大きいと考えられている.有明海における赤潮と 貧酸素水塊については多くの研究が行われており 赤潮 発生の主な要因としては出水時の大量の栄養塩類負荷 が挙げられている.また,貧酸素水塊は,海域に流入し た河川水により塩分成層が長期間継続した場合に起こ ると考えられている.したがって,海域に流入した河川 水の挙動やその影響範囲を評価することは,有明海にお いて赤潮や貧酸素水塊が発生するメカニズムを知る上 で、かつその解決策を講じる上で重要であると考えられ る、海域に流入した河川水の影響が及ぶ範囲については、 Simpson(1997) によって ROFI(Region Of Freshwater Influence)という概念が示されている.本研究では過去 に行われた広域的な同時観測データを基にして, ROFI の概念を用いた有明海における河川水の影響範囲の平 面的な分布を明らかにすることを試みた.

2. 解析方法

(1) 観測概要

本研究では 2003 年 7 月 20 日に行われた観測「有明プ ロジェクト II」のデータを解析に用いた.この観測は島 原 熊本ラインより北部の有明海全域を対象にして行 われた広域的な同時観測で, Fig.1 に示された赤い測線 で ADCP による流動曳航観測,青い測点において多項 目水質計による水質観測が行われている.観測当日の潮 汐は比較的日潮不等の小さい中潮期であり,干潮1時間 前の 06:00 から上げ潮最強,満潮,下げ潮最強,次の干 潮までの一潮汐間にわたり3時間毎に計5回の測定が行 われた.この観測により得られたデータを用い,次に示 す方法で解析を行った.

(2) 解析方法

本研究で用いる ROFI の概念では,淡水の影響が及び, 成層が形成されている範囲を評価するにあたって3つ の指標を考える[Simpson *et al.*(1990)].1つ目は,淡水の 流入により生み出された水平密度勾配により引き起こ

されるエスチャリー循環(Estuarine Circulation)の成層へ の寄与を表すもので,成層状態を完全混合するために必 要なポテンシャルエネルギー ϕ の変化率を意味する次 式で評価する.

$$\left(\frac{\partial\phi}{\partial t}\right)_{E} = \frac{1}{320} \frac{g^{2}h^{4}}{N_{z}\rho} \left(\frac{\partial\rho}{\partial x}\right)^{2}$$
(1)

ここで, h:水深(m),ρ:海水の密度(kg/m³)である. N_zは鉛直方向の混合係数であり,Bowden(1953)を参照 して次式で表されると仮定している.

$$N_z = \gamma |\hat{u}| h \tag{2}$$

ここで, γ :定数(= 3.3×10^{-2}), $|\hat{u}|$:水深平均流速(m/s)である.2つ目は,潮汐による混合(Tidal Stirring)の寄与で,

$$P_{t} = \frac{4}{3\pi} \varepsilon k \rho \frac{u_{1}^{3}}{h}$$
(3)

で表される.ここで, ε :潮流の混合効率を意味するフ アクター(=0.004), $k=2.5\times10^3$ の海底摩擦係数, u_1 :流速 の振幅(m/s)である.3つ目は,潮流の鉛直シアが水平密 度勾配に働くことによって引き起こされる密度分布の 歪み(Tidal Straining)の寄与であり,次式で表される.

$$\left(\frac{\partial\phi}{\partial t}\right)_{st} = 0.031gh\hat{u}\frac{\partial\rho}{\partial x} \tag{4}$$

以上の式に観測から得られたデータを代入し,各測点で

Fig.2 (左上図) 1 周期平均の Estuarine Circulation と Tidal Stirring の比 (右上図) 満潮時の Tidal Straining と Tidal Stirring の比(左下図) 干潮時の Tidal Straining と Tidal Stirring の比 (右下図) 1 周期平均の Tidal Straining と Tidal Stirring の比

各測定時間帯における3つの指標の値を求め、その値を 用いてそれぞれの指標の平面的な分布を求めた.その後、 Estuarine Circulation と Tidal Stirring の比(以下, EC/TSti)、 Tidal Straining と Tidal Stirring の比(以下, TStr/TSti)を 求め,各測定時間帯と1周期平均の平面分布を求めた.

3.結果および考察

Fig.2 の左上に 1 周期平均した EC/TSti を,右上に満 潮時,左下に干潮時,右下に 1 周期平均の TStr/TSti を それぞれ示した.いずれの場合においても大浦沖では成 層が強く,島原沖では混合が強いという傾向が見られた. 潮時による変化を見ると,EC/TSti は定常的な成層の状 態を表しており,1 周期での変化は小さかった.一方, TStr/TSti は周期的な成層の消長を表わすと考えられ,時 間変化が比較的大きく,干潮時に最大となる傾向が示さ れている.以上のように,それぞれの現象の性質と一致 する結果が得られた.

また,図で示した範囲で最も湾口に近い海域(C-Line 上)において,いずれの場合も成層の強い海域が見られ るが,この領域は潮流が大きいため,成層が発達しにく いと考えられており,今後別の観測データを利用して詳 細に調べる必要がある.なお,この海域の水深が非常に 大きいことも一因と考えられる.

4.まとめ

過去の一斉観測データを利用して,有明海に流入する 河川水の影響範囲を ROFI という概念を基に検討した. その結果,いずれの場合も大浦沖では成層が強く,島原 沖では混合が強いという実現象に則した傾向が得られ た.このことは,大規模な貧酸素化が見られる大浦沖で 成層を維持する機構が存在していることを示しており, 興味深い.

今後,他の一斉観測データなどについても同様の解析 を進め,数値シミュレーションも併用しながら有明海の ROFIの構造を明らかにしていきたい.

謝辞:本研究は平成21年度科学研究費補助金(基盤研究(C), 研究代表者:矢野真一郎)により実施された.ここに記し, 謝意を表する.

参考文献: 1) Simpson, J.H.(1997): Physical processes in the ROFI regime, *J. Mar. Sys.*, 12, 3-15., 2) Simpson, J.H., *et al.*(1990): Tidal Straining, Density Currents, and Stirring in the Control of Estuarine Stratification, *Estuaries*, 13(2), 125-132.