熊本大学工学部環境システム工学科 学生会員 〇赤坂康太
熊本大学大学院自然科学研究科博士後期課程 学生会員 大野健太郎
熊本大学大学院自然科学研究科博士前期課程 学生会員 沢田陽佑
熊本大学大学院自然科学研究科教授 正会員 大津政康

1. はじめに

コンクリートとモルタルではひび割れ進展に関して 異なる挙動を示すことが知られている。この要因とし てコンクリートとモルタルの違いである骨材の有無が 影響していると考えられる。AE 計測は微細レベルでの 破壊現象に対し高い検出能力を発揮することから、構 造物の健全性評価などの非破壊検査手法として注目を 浴びている技術である。コンクリートの特徴は脆性破 壊を起こすことであり、コンクリート内部を目視で確 認することが困難であるが、AE 法を適用することで常 時モニタリング、内部の詳細な破壊進行状況が把握可 能になる。したがって、コンクリートおよびモルタル 供試体の曲げ破壊過程に AE 法を適用し、骨材がひび割 れ進展におよぼす影響について考察した。

2. 解析理論

2. 1 SiGMA 解析¹⁾

AE センサに **AE** 発生源より伝播、到達してくる **AE** 波の初期振動値 *A* は以下の式で表される。

$$A = C_s \operatorname{Ref}(t, r) \gamma_p \gamma_q M_{pq} \frac{1}{R} \cdot DA \cdot \cdot \cdot (1)$$

ここで、 C_s は弾性体の材料係数、DAはクラック面積、 Ref(*t*,*r*)は反射係数、 γ_p 、 γ_q は AE 波のセンサへの入射 方向 γ のp 方向およびq 方向への余弦ベクトルで、Rは AE 発生源とセンサの距離を表す。それぞれの AE セン

表-1.コンクリート供試体の示方配合

					-
粗骨材の 最大寸法	スランプ	空気量	W/C(%)	s/a(%)	
(mm)	(cm)	(%)			
20	8.7	5.9	55	43.4	
		単位量	(kg/m ³)		
W	С	S	G	AE減水剤	AE助剤
164	300	744	1178	1.08	0.012

表-2.モルタル供試体の示方配合

	単位量(kg/m ³)				
W/C(%)	W	С	S		
55	331	602	1204		

サで検出される AE 波形から AE 波の到達時間を読み取 り、この到達時間差から AE 発生源の位置標定を行い、 式(1)に AE 波形の初動振幅値とこれらの値を代入する ことにより未知数のモーメントテンソル *M_{pq}*を決定す る。*M_{pq}*は応力とひずみと同じく2階のテンソルなので、 固有値解析を行えばマイクロクラックの種類や運動方 向を決定することができる。

3. 実験概要

実験に使用したコンクリート標準角柱供試体とモル タル標準角柱供試体の示方配合を表-1、表-2に示す。 実験は、支点間距離 100mm、載荷点間距離 300mm と して、4点曲げ載荷試験を実施した(図-1参照)。同 時に AE 計測を行い、供試体の破壊に伴い AE 計測を終 了した。AE 計測には DiSP(PAC 社製)を使用し、AE センサは R15(共振周波数:150kHz)を8個用いた。 SiGMA 解析を行うためには6 チャンネル以上の AE セ ンサが必要であり、解析に使用する AE イベントは8チ ャンネル全てのセンサで同定されたものとした。AE セ ンサよって検出された信号はプリアンプによって 40dB 増幅した後、さらにメインアンプにて 20dB 増幅させて 記録させた。しきい値を 38dB とし、周波数帯域を 10kHz-2MHz として AE 計測を行い、サンプリング周 波数 1MHz で信号波形を A/D 変換し、1 波形を 1024words として記録した。

4. 結果および考察

4. 1 AE パラメータ解析結果

図-2にコンクリート供試体、図-3にモルタル供 試体の本実験で検出された AE ヒット数と載荷荷重の 時間的変化を示す。両供試体で破壊時に AE ヒット数が 卓越しているのが分かる。また、コンクリート供試体 では、モルタル供試体に比べ、ピーク直前から AE ヒッ ト数が頻発していることが確認された。図-4に両供 試体の振幅値分布を示す。39dB と 74dB の間で両供試 体の振幅値分布の傾きは等しく、破壊の規模を表す b 値は同程度であることが分かる。コンクリート供試体 は破壊直前にひび割れを目視で確認することができた のに対し、モルタル供試体の場合はひび割れを確認す ることができないまま瞬時に破断した。このことがピ ーク直前の AE ヒット数と関係していると考えられ、さ らにコンクリート供試体のみで75dB以上の振幅値が検 出されていることから骨材の影響が AE ヒット数の違 いと振幅値分布の差につながったと考えられる。

4. 2 SiGMA 解析結果

AE イベントについて、モーメントテンソルのせん断 成分が占める割合(せん断成分比)により、AE イベン トの形成モードを類別した。せん断成分比が 0~40%の ものを引張型、60~100%のものをせん断型、40~60%の ものをせん断と引張の混合型の AE と分類した。そして、 SiGMA 解析結果を3次元空間で把握するために、Light Wave3D (New Tek 社製) にて図化を行った。図-5に SiGMA 解析結果に用いたクラックモデル、図-6にコ ンクリート供試体、図-7にモルタル供試体の SiGMA 解析結果を示す。モルタル供試体では、AE イベントの 数は少なく、供試体下部にクラックが集中した。コン クリート供試体では多くの AE イベントが同定され、載 荷初期では供試体上部に AE 発生源が位置標定された。 その後、供試体下部に引張型クラックが生じ、供試体 が破壊したことが確認された。また両図より AE 発生源 の位置はひび割れ面と一致していることがわかる。以 上のことから、曲げひび割れ進展が骨材により抑制さ れている様子が AE 法により明らかとなった。

参考文献

大津政康,重石光弘,湯山茂徳,岡本亨久:AEモ
ーメントテンソル解析のためのSiGMAコードの開発,非破壊検査, Vol.42, No.10, pp570-575, 1993.

図-6 コンクリート供試体の SiGMA 解析結果

図一7 モルタル供試体の SiGMA 解析結果