一桜島ボラ

桜島ボラ (磨り滑し)

火山灰質粗粒土の土粒子密度特性に及ぼす種々の影響

崇城大学 学生員○塚部 俊幸 崇城大学 正会員 荒牧 憲隆 崇城大学 学生員 清松 潤一

1. はじめに

粒子内空隙を有する火山質粗粒土は、特殊土として取り扱われ、現在の試験方法や設計基準では対応できないことがある。これに加え、石炭灰や鉄鋼スラグなどの廃棄物においても、地盤材料として期待されるものが多いが、これにも粒子内空隙を有するものが多く、粒子密度などの物理的諸性質には、ばらつきが多いり。そこで本研究では、粒子内空隙を有する種々の火山灰質粗粒土を対象に、土粒子の密度に及ぼす粒径の影響、粒子磨り潰しの影響、煮沸時間の影響を明らかにすることを目的としている。

2. 試料

本研究で用いた試料は、全5種類の火山灰質粗粒土を用いた。しらすとして、鹿児島県垂水市で採取した新城海岸しらす、鹿児島霧島市で採取した姶良しらすを用いた。また、鹿児島大学農学部付属高隅演習林(鹿大ボラ)、桜島で採取したボラ(桜島ボラ)の2種類の試料も対称とした。さらに北海道札幌市南東端で採取した清田火山灰も使用している。

2.80

2.60

3. 土粒子の密度試験結果

土粒子の密度試験では、ピクノメータを用いて実験 を行った。土粒子の密度実験における煮沸時間を2時 間として行った。図 - 1、図 - 2では、粒径 2.00 mm以 下におけるふるい目毎の密度とそれを磨り潰した時の 密度の比較である。図-1の桜島ボラでは、原粒子の 粒径が小さくなる程、密度が大きくなっている。粒径 0.105 mmをピーク時を、示していることがわかる。磨 り潰した粒径は小さくなる程、密度は大きくなってい るが、粒径 0.84 ㎜以下からは、ほぼ一定になっている。 図 - 2 の姶良しらすでは、原粒子の粒径が小さくなる 程、密度が大きくなっており、粒径 0.074 mmをピーク 時と示している。磨り潰した粒径では小さくなる程、 ほぼ一定になっている。各粒径を比べても磨り潰しを した方の密度が大きくなっていることがわかる。**図** -1、図-2からも分かるように磨り潰した密度が大き くなり、粒径 0.84 mm以下は、ほぼ一定になることが分 かった。

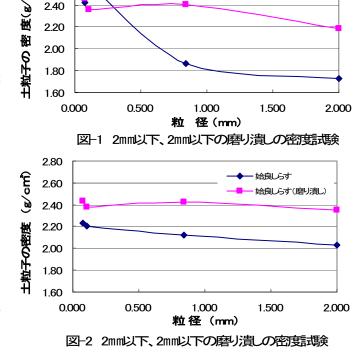


表 - 1 では、5 試料について 19.1 ㎜残留分試料、9.51

mm残留分試料、2.00 mm残留分試料を、臼を用いて磨り潰し、各ふるい目での試料を2.00 mm通過分として実験した。原粒子と磨り潰した2.00 mm通過全試料の密度を比較を行っている。それぞれの試料の特徴を見ると、新城しらす液状化では、2.00 mm通過全試料よりも9.52 mm残留を潰した試料の密度が大きいことがわかる。鹿大ボラでは、どの磨り潰した密度より2.00 mm通過全試料が大きくなっている。北海道清田火山灰では、2.00 mm通過全試料より磨り潰した密度が高く、磨り潰す粒径が小さい程、密度が高くなっている。桜島ボラでは、

2.00 mm通過全試料より磨り潰 した密度が高いが、元の粒径が 大きい方が、高くなっている。 姶良しらすでは、2.00 mm通過 全試料の方が、磨り潰した試料 よりも密度が大きいなってい る。**表 - 1** から分かるように密 度を正しく評価するためには、 密度試験を 2.00 ㎜以上から磨

表-1 土粒子の密度試験

試料名	2.00mm ふるい	臼で潰した試料	臼で潰した試料	臼で潰した試料
	通過分全試料	(19.1 mm残留分)	(9.5 mm残留分)	(2.00 mm残留分)
新城しらす液状化	2.224	2.065	2.268	2.132
鹿大 ボラ	2.006	1.955	1.996	1.934
北海道 清田 火山灰	2.233	2.169	2.326	2.341
桜島ボラ	1.726	2.359	2.336	2.339
姶良しらす	2.526	2.323	2.246	2.336

り潰した試料を用いることが必要であると考えられる。

4.密度試験への煮沸時間の影響

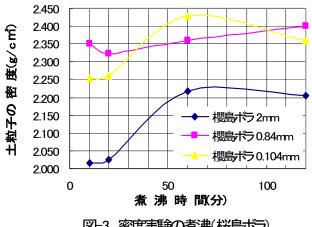


図-3 密度実験の煮沸(桜島ボラ)

図 - 3、図 - 4、図 - 5 では、2.00 mm通過分全試料だけで は、正しい密度が出ないと考えられる。そのため、2.00 mm残留以上の分試料を磨り潰し 2.00 mm通過試料(原粒径 (2.00 m以下)+磨り潰し礫分)、0.84 m通過試料(原粒径 (0.84 mm以下)+2.00 mm以上の磨り潰し分)、0.104 mm通過(原 粒径(0.104 mm以下)+0.25 mm以下の磨り潰し)させた試料に 対し、密度試験を行った。煮沸時間を 10 分、20 分、60 分、120分と行い、**図-3**の桜島ボラでは、対象粒径を細 かい場合でも、煮沸時間が長くなる程、密度が大きくなっ ている。対象粒径が小さい程、密度が大きくなる。図-4

図-4 密度実験の煮沸(鹿大ポラ)

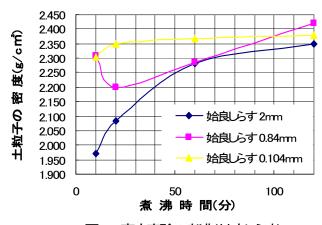


図-5 密度実験の煮沸(姶良しらす)

の鹿大ボラでは、図-3と同等な結果が出た。図-5の姶良しらすも図-3と同等な結果が出た。図-3、図-4、図-5からもわかるように粒径を磨り潰し細かくしても煮沸時間は1時間から密度が落ち着くことがわか った。

4.まとめ

土粒子の密度については、磨り潰すと密度が大きくなり、粒径 0.84 mm以下は、ほぼ一定になることがわか った。密度を正しく評価するためには、2.00 mm以上の磨り潰した試料を用いる必要があると考えられる。ま た、粒径を磨り潰し細かくしても煮沸時間は1時間から密度が一定になることが認められた。

【参考文献】1)荒牧ら:火山灰質粗粒土の物理的性質に関する一考察、第 43 回地盤工学研究発表会講演 集、pp. 771-772, 2008.