海浜断面変形に伴う底質表面の粒度分布と底質内部密度の時空間変動

熊本大学 学生会員〇蒲原さやか,池田有希;正会員 山田文彦; 神戸高専 正会員 辻本 剛三

1. はじめに

養浜海岸は混合粒径の海浜となることが多く,海 浜地形を予測する際に底質の移動方向や分級効果を 考慮する必要がある.しかし,現状の数値モデルで は,波高・流速については予測精度の向上が見られ るものの,底質輸送や地形変化に関しては十分であ るとは言い難い.これは,分級効果や地形変化に伴 う底質内部の密度構造などの情報が不足しているこ とが一因である.そこで,本研究では室内移動床実 験を行い,底質表面の粒子画像撮影から粒度分布の 時空間変化を調べるとともに,X線CTスキャナーを 用いて底質内部の密度構造について調べた.

2. 岸沖海浜断面変形の室内実験

長さ 18m, 高さ 0.8m, 幅 0.6m の 2 次元造波水槽 を用いて初期勾配 1/15, 水深 0.4m で海浜変形実験を 実施した.入射波は不規則波とし,地形変化が定常 とみなせるまで波を作用させた.その作用時間は Case-A, B が 17 時間, Case-C, D は 19 時間である. 実験条件の概要を表-1 に示す.

Case	入射波高	周期	中央粒径	С	地形変化
	(m)	(s)	(mm)	パラメータ	の分類
А	0.133	1.23	0.50	7.8	中間型
В	0.140	1.43	0.50	7.5	侵食型
С	0.038	1.15	0.50	2.4	堆積型
D	0.038	1.15	0.38	2.8	堆積型

表-1 実験条件

波高,流速,濁度の測定は,容量式波高計7台, 電磁流速計1台,透過光式濁度計1台を用い,波高・ 濁度は100Hz,流速は200Hzで測定した.地形変化 の時空間変化は数時間毎にレーザー距離計により 2cm 間隔で計測した.粒径分布の時空間変化は非接 触手法である Rubin の画像計測手法¹⁾を用いて算出 した.そのため,デジタルカメラを用いて底質表面 を地形変化と同じ時間間隔で岸沖方向(10cm 間隔) に撮影した.また,地形変化が定常状態に達した後, 特徴的な地形変化が生じた場所(図・2中の▲)でコ アサンプリング(内径4cm,厚さ3mm,鉛直方向30cm のアクリル製サンプラー)を行い,X線CTスキャナ ーを用いて底質内部の空隙や密度構造の相違を非破 壊状態で表面から5mm間隔で撮影した.

図-1は Case-B(侵食型)で定常に達するまでの海 浜断面の時間変化(上段)とその標準偏差(σ)の 岸沖分布(下段)を示す.図中の赤丸(○)はバー 頂上を示し,波作用 2 時間後に x=3.2m 付近に位置し たバーは時間とともに沖側へ移動し,それに伴って トラフも沖側に存在範囲を広げている.定常に達す るまでの地形変化の標準偏差は,バーム,トラフ, バー付近で大きく,その大きさは 6cm 程度である.

図-2 に中央粒径(D₅₀)の時空間変動特性(実線:中 央粒径の平均値; 点線:標準偏差($\pm \sigma_{nso}$))と定常 状態の海浜断面とを重ねて示す. 上段の侵食型 (Case-B) は波作用から 2, 4, 6, 9, 12, 17 時間後,下 段の堆積方(Case-D)は2,3,5,7,9,11,13,17,19時 間後の撮影画像から算定した中央粒径の平均値と標 準偏差の岸沖分布である. 中央粒径の岸沖分布を比 較すると、侵食型ではバームやバー上で大きく、ト ラフで小さくなり、地形の起伏に応じた分布傾向が 見られる.一方,堆積型ではバームから汀線にかけ て一旦小さくなるが、トラフ終端付近や x=3m より 沖側で大きくなり,侵食型とは異なった傾向を示す. 次に,中央粒径の標準偏差を岸沖方向に比較すると, 侵食型ではバームから汀線にかけて一旦小さくなる が、その後 0.2mm 程度の変動幅で推移し、この傾向 はトラフ終端まで見られる. トラフを過ぎるとバー 上で最小の変動幅となりそれ以降も岸付近よりも小 さい 0.1mm 程度の変動幅で推移する.一方, 堆積型 では、 遡上端からバームにかけて 0.2mm 程度の変動 幅で推移し、汀線付近で一旦小さくなる、その後は 沖側まで 0.2mm 程度の変動幅で推移している. この ように Rubin の画像計測手法を用いて侵食・堆積型 における粒径分布の時空間変化を非接触で比較する ことで中央粒径の平均値と標準偏差の岸沖分布の相 違が明らかとなった.

次に、地形変化に伴う底質の内部構造について述 べる. X線 CT スキャナーでは、撮影した水平断面内 の CT 値が画素(水平方向 0.073mm, 鉛直方向 1mm) 毎に出力される.この CT 値は撮影した物質の密度に 比例するので、用いた底質毎に密度変換式を求めた. 図-3 は室内実験・現地において岸沖方向に採取した コア試料のかさ密度の鉛直分布を比較したものであ る.室内実験・現地ともにかさ密度の鉛直分布の平 均値は沖側に向かって大きくなっている.また、か さ密度の大きさは、ともに 1.3~1.8g/cm³の間で分布 しており、大きな差は見られない.これらの結果は、 室内の移動床実験でも底質の密度変化を現地とほぼ 同じスケールで評価できることを示唆している.

また,侵食型ではトラフ・バー付近 (*x*=3·4.3m)の 表層 2cm 付近のかさ密度は,それ以深の底質よりも 0.2g/cm³ 程度減少しているが,堆積型では汀線~ト ラフ付近 (*x*=1.3-1.6m)では表層付近の密度は比較的 一定である. つまり,地形変化の形態によって表層 付近の底質の密度構造は変化する.

表-2 はコアと同時に採取した試料のふるい試験の 結果であり、中央粒径(D_{50})、ふるい分け係数(S_0) と偏わい度(S_k)を示す²⁾. 侵食型の S_0 の値はいず れも $S_0 = 1.25$ 程度³⁾であり、底質は均一で分級された 状態と判断できる.また、バー付近(x=4.3m)を除 いて $S_k \approx 1$ となっており、粒度組成は中央粒径付近に 集中している.一方、堆積型では汀線~トラフ付近 (x=1.3-1.6m)で $S_0 > 1.25$ となり、粒径の均一性は低 くなる.また、いずれの場所でも $S_k > 1$ となり、粒径 分布は D_{50} よりも大きいほうに偏っている.今後、 特に表層 2cm 付近までの CT 撮影を 1mm 間隔程度で 密に行い、地形変化の形態によるかさ密度の鉛直分 布と底質の粒径分布との関係性について検討する必 要がある.

表-2 砂粒子のふるい試験の結果

	侵食型(Case-B)				堆積型(Case-D)			
距離	2.0	3.0	4.3	5.0	0.7	1.3	1.6	2.5
D_{50}	0.50	0.50	0.50	0.46	0.35	0.41	0.39	0.38
S_0	1.29	1.24	1.33	1.28	1.26	1.43	1.51	1.30
S_k	1.01	0.99	1.19	0.95	1.30	1.09	1.31	1.13

3. 数値モデルによる地形変化の再現

流動・地形変化の数値モデルは Kobayashi ら(2007) のモデル(CSHOREW)を用いた.このモデルは時 間平均・水深積分されたモデルで掃流輸送・浮遊輸 送のモデル化に特徴がある.

図-4 は Case-B と Case-D の実験値と計算値の地形 変化を示したものである. Case-B の計算値では,バ ーの発達が見られず現状では地形の再現ができてい ない. Case-D では,バームの発達がみられ堆積型の 地形変化は再現できている. Case-B, Case-D ともに 岸向きに地形が動いているのは,沖向きの戻り流れ の再現が弱いことなどが一因である. なお,実験結 果より,地形は底質の粒径分布だけでなく密度構造 にも依存する可能性が示唆されたため,現状のモデ ルに底質内部構造の影響も考慮してゆく予定である.

図-4 実験値と計算値の地形変化

4. おわりに

- (1)実験結果から Rubin の画像計測手法や X 線 CT ス キャナーは,現地や室内実験の底質表面の粒度分 布や内部の密度構造の時空間変動を非破壊で短時 間に把握できる有効な手法であることが示された.
- (2)侵食・堆積型の形態によって底質表層の中央粒径 の平均値と標準偏差の岸沖分布は異なること、ま た表層付近の底質の密度構造に違いが存在するこ とから、分級効果は底質の粒径と底質内部の密度 と関連する可能性が示唆された.

参考文献

- 1) Rubin, D. M., J. of Sedimentary Research, 74 (1), pp.160-165, 2004.
- 2) 栗山善昭, 海浜変形, 技報堂出版, p.157, 2006.
- 3) 服部昌太郎, 海岸工学, コロナ社, p.230, 1987
- Kobayashi, N., Agarwal, A. and Johnson, B. J. of Waterway, Port, Coastal, and Ocean. Engineering, 133(4), pp.296-304, 2007.