地質の違いによる貯水池上流域の懸濁物質流出挙動

九州大学工学部	学生会員	○郭 めい	九州大学大学院	正会員	三谷	泰浩
九州大学大学院	学生会員	柴田 徹	九州大学大学院	正会員	江崎	哲郎
九州電力株式会社	正会員	檀博	九州電力株式会社	正会員	池田	博嗣

1. はじめに

近年,各地のダム貯水池では台風などの大規模な出 水時に大量の懸濁物質が上流域から貯水池内へ流入 し、貯水池内で長期間滞留するため、放流による濁水 の長期化が問題となっている.この問題に対し、様々 な対策が行われているが,いずれも根治的な対策とは なっていない.これは, 懸濁物質の供給源, 即ち上流 域における濁水の発生源及び発生要因の特定ができ ておらず, それらに対する根本的な対策が施されてい ないためである.これまでの研究で,GISを用いて上 流域において濁水発生に関与する素因を可能な限り 抽出し,定量化した¹⁾.また,流域単位で懸濁物質の 流出状況を計測し, 懸濁物質の流出特性と定量化した 各種素因との関連性から,崩壊面積,流域面積等が濁 水の発生に影響することを示した¹⁾. しかしながら, 上流域における地質の違いも濁水発生の大きな要因 の1つであると考えられているにもかかわらず, 懸濁 物質の流出との関係を明確に把握できていない.

そこで本研究では、地質が懸濁物質の流出に与える 影響を把握することを目的とし、まず、現地調査結果 を基に地質図を新規に作成し、その空間分布を把握し た上で、濁度及び流量の測定箇所を選定する.そして、 観測結果から、地質の違いによる懸濁物質の流出特性 の違いについて検討する.

2. 観測流域の選定

本研究で着目する地質の空間分布を明らかにする ために、専門家による現地調査を行い、これまでの地 質区分を見直し、 濁水発生に対する影響度の観点から、 貯水池上流域の地質を花崗岩, 槙峰層群の砂頁岩優勢 層、乱雑層、日向層群の砂頁岩優勢層の4つに区分す る. さらに GIS を用いて紙版の地質図をデジタイズし て地質に関する素因データを作成する. 観測流域の選 定に際しては後述する懸濁物質流出量予測モデルを 用いる.これまでの測定結果から構築された予測モデ ルに 20mm/h の降雨を 24 時間与え, これまでの研究 で明らかになった様々な要因を考慮した上で, 流域ご とに予測懸濁物質流出量を算出する. さらに, 現地調 査において測定機器の配置を検討した上で, 地質の空 間分布を考慮し, Fig. 1 に示すように, 地質的要因が 懸濁物質の流出に与える影響を把握できるような観 測流域を 10 地点選定する. また, 濁水の発生に大き く影響すると考えられる崩壊面積も, 各崩壊地が含ま

れる地質ごとに整理して Table 1 に示す.

3. 懸濁物質流出量の予測

観測結果は、流域ごとに降雨が異なり、単純に懸濁 物質流出量の比較を行うだけでは、懸濁物質の流出特 性を把握することができない.同一降雨状況下におけ る懸濁物質流出特性を把握するため、降雨に対する懸 濁物質流出予測モデルの構築が必要となる.そこで、 文献2)で構築した懸濁物質流出量予測モデルを基に、 本年度の観測結果を付け加えて修正を行い、同様の手 法を適用して各観測流域に対する懸濁物質流出量予 測モデルを再構築する.この予測モデルに、10mm/h、 20mm/h、30mm/hの一様な降雨をそれぞれ 24 時間与 え、同一降雨状況下における 48 時間の総懸濁物質流 出量を算出することで比較検討を行う.流域ごとに算 出した降雨量別予測流出懸濁物質総量を Fig. 2 に示す.

4. 地質の違いによる懸濁物質の流出特性

Fig.2 に示すように, 10mm/h の降雨を与えた場合と 20mm/h の降雨を与えた場合では, 懸濁物質流出量の 大小関係が逆転する箇所が数箇所見られる. しかし, 20mm/h と 30mm/h については, ほぼ同じ傾向を示し, 懸濁物質の流出特性は, 降雨量により異なることが分 かる.

ここで、出水時の状況に比較的近いと考えられる 20mm/hの降雨を24時間与えた場合に着目する.この 場合の各測定流域における懸濁物質流出の挙動を Fig.3に示すとともに、Table1に懸濁物質流出量と各

Fig. 1 Geological condition and measurement area.

観測流域の地質的特徴を整理する. Fig.2 及び Fig. 3 から分かるように,流域 H28 が非常に大きな流出量を 示す.また流域 H28, H24, H26 は降雨開始から流出 量が緩やかに増加した後,それぞれある時期において 急激に増大する.その他のケースについては,降雨と ともに徐々に増加し,降雨が終了すると同時に急激に 流出量は減少し,緩やかにゼロに近づく.

地質の違いと懸濁物質流出量との関係についてみ ると、乱雑層の中にあり、かつ崩壊面積が大きい流域 H28 や H20 では懸濁物質の流出量も比較的大きい傾 向にある.一方、日向層群の砂頁岩優勢層にある流域 H37 や乱雑層にある流域 H22 など、流域面積が小さく 崩壊面積も小さい流域では、懸濁物質流出量も少ない 傾向にある.また花崗岩が広く分布する流域 H14 や H26 も、崩壊面積が大きいエリアでは懸濁物質流出量 が比較的大きくなる傾向がある.しかしながら、これ らの傾向とは異なる流域も存在し、必ずしも地質的要 因との相関性が大きいとは言えないことが明らかと なった.

5. おわりに

本研究では地質の違いによる貯水池上流域の懸濁 物質流出挙動について考察を行った.その結果,地質 による明確な違いは確認できなかった.よって,地質 的要因のみが懸濁物質の流出挙動を左右するのでは なく,崩壊面積や流域面積などの他の要因と絡み合っ て懸濁物質の流出に影響を及ぼしていると考えられ る.

<参考文献>

 馬場奈津子:平成18年度土木学会西部支部研究発表会 講演概要集,pp183-184,2006. 柴田徹:平成 19 年度土木学会西部支部研究発表会講演 概要集, pp219-210, 2007.

Fig. 2 Calculated total amount of suspended solids in each rainfall.

Fig.3 Calculated suspended solids runoff by prediction model by inputting 20mm/h rainfall for 24 hours.

	Table 1 Geological condition and landslide scar in measurement areas.	
Ŧ		_

	-											
Mesurement	Prediction of total amount of		Watershed of fork			Land slide scar before 05/2004						
area	suspended solids (t)		Granite	Sandstone & Shale (Makimine)	Caotic beds	Sandstone & Shale (Hyuga)	Total	Granite	Sandstone & Shale (Makimine)	Caotic beds	Sandstone & Shale (Hyuga)	Total
Ц6	106.00	Area	0	1.810	0	0	1.810		9.9357			9.9357
110	100.90	Propotion(%)	0	100	0	0	_		100			-
H14	121.33	Area	3.692	0	0	0	3.692	0.9059				0.9059
1117	121.JJ	Propotion(%)	100	0	0	0	-	100				-
H20	147.24	Area	0	0.368	3.165	0	3.533		0	49.5625		49.5625
1120	177.61	Propotion(%)	0	10.42	89.58	0	-		0	100		-
H24	270.06	Area	0	0.043	2.154	0	2.197		0	8.9223		8.9223
1127	270.00	Propotion(%)	0	1.94	98.06	0	-		0	100		-
H22	53.61	Area	0	0.080	1.476	0	1.556		0	0		0
1122	55.61	Propotion(%)	0	5.14	94.86	0	-		_	-		-
H26	224.60	Area	0.759	0.835	0.904	0	2.499	55.6224	22.9096	1.4005		79.9325
1120	224.00	Propotion(%)	30.370	33.43	36.19	0	-	69.59	28.66	1.75		-
H28	719.09	Area	0	0	3.748	0.075	3.823			34.9483	0	34.9483
1120	719.09	Propotion(%)	0	0	98.04	1.96	-			100		-
H31	94.10	Area	0.372	0	1.244	0	1.616	0		1.6921		1.6921
1151	24.10	Propotion(%)	23.040	0	76.96	0	-	0		100		-
H36	195.16	Area	0	0	0.468	1.170	1.638			2.5540	10.7732	13.3272
1155		Propotion(%)	0	0	28.55	71.45	-			19.16	80.84	-
H37	15.31	Area	0	0	0.136	0.833	0.969			0.2304	0	0.2304
1157		Propotion(%)	0	0	14.01	85.99	-			100	0	- 1

* Unit of Area: Watershed of fork: km^2 , Landslide scar: $\times 10^{-3} km^2$