# 吊材の損傷が下路ランガートラス橋の固有振動特性に及ぼす影響

長崎大学大学院 学生会員 〇西行 健 長崎大学工学部 正 会 員 中村聖三 長崎大学工学部 フェロー 高橋和雄 長崎大学工学部 フェロー 岡林隆敏

### 1. はじめに

近年、構造物の維持管理の重要性が増している中で、構造物の固有振動数の変化から損傷を検出しようと する研究が行われている。しかしながら、構造物の部分的な損傷、例えばある一部材の破断によって固有振 動数や振動モードがどういった変化を起こすかは必ずしも明確となってはいない.つまり,どの程度の振動 数の変化を検出する必要があるのか、またどういった位置にセンサー等の器具を設置するのが適切かという ことに関する基礎的なデータが不足しているのが現状である。そこで本研究では、アーチ橋の吊材が破断し た場合に固有振動数や振動モードにどのような影響を及ぼすかということに着目し解析・検討を行った.

### 2. 対象橋梁

長崎半島先端部の樺島と脇岬をつなぐ樺島大橋を対象とした. 樺島大橋は, 昭和 61 年に完成した橋長 227m (最大支間 152m),幅員 7.5mのランガートラス式の橋梁である.本橋を対象とした理由として、長崎大学 で行った振動計測の結果得られたデータ 1)2)から、解析モデルの妥当性を確認できるという点が挙げられる.

### 3. 解析概要

本研究では、汎用有限要素解析ソフトウェア MARC を用い固有振動解析を行った. 今回は, 吊材が健全な 状態で(解析 A), 図-1 に示す吊材 1~15 のヤング 率を順に $0kN/mm^2$ とした場合(解析 $B1\sim B15$ ), 吊材 1~15 がそれぞれ下端部で破断した状態(解析 C1~ C15) について解析を行った. 破断した状態は、吊材

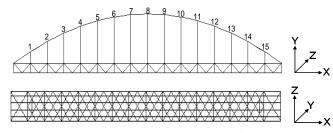



図-1 樺島大橋解析モデル

の下端部とトラス部の節点とを繋げないことで表現した. なお橋軸方向の非対称性は小さいが、今回は基礎 的なデータを得るという意味で全てのパターンで解析を行った.

#### 3.1 解析モデル

樺島大橋の上部工を図−1 のように 3 次元弾性はり要素(No.52)でモデル化した. アスファルト舗装の質量 は集中質量として橋面上の各節点に与え、鉄筋コンクリート床版は ヤング係数比を利用して鋼部材に置き換え、その質量と断面2次モ ーメントを縦桁に加えることで床版の剛性を表現した. 境界条件に ついては、片端をピンとし、もう一端をローラー支点とした、桁、 主構の材料は一般的な鋼であるため、その特性値としてヤング率 200kN/mm<sup>2</sup>, ポアソン比 0.3, 質量密度 7857kg/m<sup>3</sup>を仮定した. 縦桁 の材料特性に関しては、床版の質量を考慮するため質量密度を 15433.2kg/m³とし、ヤング率およびポアソン比はそれぞれ  $200kN/mm^2$ , 0.3 とした. アスファルト舗装の質量密度に関しては、 一般的な値である 2293.6kg/m³を使用した.

### 4. 解析結果

解析 A と解析 B, C の代表例として, 解析 B1, C1 の 1 次~15 次 モードまでの固有振動数を $\mathbf{z}$ -1に示す.解析 A と解析 B, C とを 比較すると、9次モード程度までは固有振動特性の変化はわずかで あり, 最大でも 0.1Hz 程度である.

表-1 解析 Δ R1 C1 の固有振動数

| 表-I 解析 A, BI, CI の固有振動数 |       |       |       |  |
|-------------------------|-------|-------|-------|--|
| モード                     | 解析 A  | 解析 B1 | 解析 C1 |  |
| 1                       | 0.903 | 0.903 | 0.903 |  |
| 2                       | 0.959 | 0.949 | 0.949 |  |
| 3                       | 1.31  | 1.30  | 1.30  |  |
| 4                       | 1.40  | 1.33  | 1.33  |  |
| 5                       | 1.88  | 1.77  | 1.77  |  |
| 6                       | 2.20  | 2.20  | 2.20  |  |
| 7                       | 2.85  | 2.74  | 2.72  |  |
| 8                       | 2.97  | 2.84  | 2.84  |  |
| 9                       | 2.97  | 2.95  | 2.95  |  |
| 10                      | 4.00  | 3.35  | 3.33  |  |
| 11                      | 4.21  | 4.00  | 4.00  |  |
| 12                      | 4.80  | 4.33  | 4.32  |  |
| 13                      | 4.85  | 4.83  | 4.83  |  |
| 14                      | 5.23  | 4.87  | 4.87  |  |
| 15                      | 5.37  | 5.22  | 5.22  |  |
|                         |       | •     | •     |  |

# 4.1 解析 B の結果

解析Bより得られた結果で特徴的な変化があったものについて説明 する. まず、解析 B1 と B15 では独特の振動数・振動モードが出現す る. この例として解析 B1 を取り上げると, 振動数は表-1 の網掛け部 分で示すように、10次で明確な変化が見て取れる. なおこの振動モー ドは $\mathbf{Z} - \mathbf{Z}$  に示すように、ヤング率を  $\mathbf{0kN/mm}^2$  とした吊材の位置でア ーチリブが局部的に変形するモードである. また解析 B7 と B8 では、 解析 A における 8 次と 9 次モードの順番が逆となって出現する. 解析 A O 8 次モードは図<math>-3(a)に示すように面外方向には振動せず面内方 向に振動するモードで,9次モードは図-3(b)に示すように面内方向に は振動せず面外方向に振動するモードである. さらに、解析 A におけ る8次と9次モード, または12次と13次が連成したモードが出現す ることがある. 例えば、解析 A の 12 次モードは $\mathbf{Z} - \mathbf{4}(\mathbf{a})$ に示すように 面内方向のみ、13 次モードは $\mathbf{Z}-\mathbf{4}(\mathbf{b})$ に示すように面外方向のみに振 動するモードであるのに対し、解析 B5 の 8 次モードでは図-5 に示す ように面内振動と面外振動が連成したモードとなっている。これらの モードの特徴として、解析 A における面内方向に振動するモードと面 外方向に振動するモードの振動数が近いということが挙げられる.

# 4.2 解析 C の結果

解析 C の結果において特徴的な変化があったものについて説明する. まず、解析 C2~C14 では、構造全体としての振動は非常に小さく、破 断した吊材の振動が卓越しているモードが出現し、その振動数は独特 なものである. 破断した吊材が橋梁の中央部に近い、すなわち吊材が 長いほど、そのモードが低次で出現するようになる(表-2網掛け部 分参照). この例として $\mathbf{Z} - \mathbf{6}$  に解析 C5 の 1 次モードを示す. しかし, 解析 C1, C15 ではそのようなモードは出現せず、解析 B1, B15 と似 た挙動を示し、表-1 からも見て取れるように振動数もほぼ同様の値 となる. また、解析 B と同様に、解析 C7 と C8 では解析 A における 8 次と9次モードの順番が逆となって出現し、解析 A における8次と9 次,12次と13次が連成したモードが出現する.

## 5. まとめ

今回の解析により、本橋においては吊材の破断が固有振動特性 に及ぼす影響は全体的には小さく, 固有振動数で 0.1Hz 程度の変 化しか生じないものの,新たな振動モードが出現する,健全な状 態における2つの振動モードが連成して出現する、振動モードの 出現する順番が逆になる等、部分的には比較的大きな変化が生じ ることが判明した. また損傷箇所が振動特性に大きく影響を及ぼ すことも明らかになった. 今後は部材破断のような目視でも容易 に検出できる損傷状態ではなく、より軽微な損傷による影響も検 討していきたいと考えている.

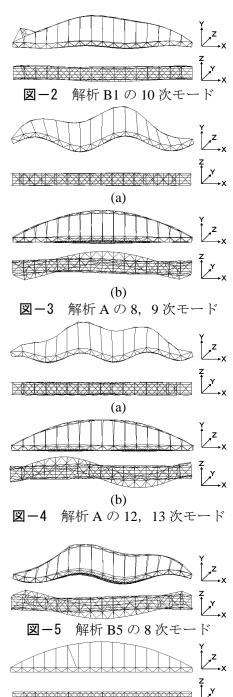



図-6 解析 C5 の 1 次モード

表-2 解析 C5, C6, C7 の固有振動数

| モード | 解析 C5 | 解析 C6 | 解析 C7 |
|-----|-------|-------|-------|
| 1   | 0.772 | 0.750 | 0.681 |
| 2   | 0.904 | 0.904 | 0.863 |
| 3   | 0.958 | 0.939 | 0.903 |
| 4   | 1.12  | 0.973 | 0.962 |
| 5   | 1.31  | 1.31  | 1.31  |
| 6   | 1.40  | 1.40  | 1.40  |

#### [参考文献]

1)岡林隆敏, 原忠彦: 道路橋振動特性推定における衝撃加振法の適用, 構造工学論文集, Vol.34A, pp.731-738, 1988 2) 奥松俊博, 岡林隆敏, 房前慎一, 船原祐樹, 大岩根健吾: 2 段階推定法による橋梁振動特性の高精度自動推定, 構造工学論文集, Vol.52A, pp.227-236, 2006