HEM を用いた簡易型中間定着具の開発

長崎大学大学院	学生会員	前平悠希
長崎大学	正会員	原田哲夫
長崎大学大学院	学生会	坂田祥文
オリエンタル白石株式会社	正会員	生田秦清

1.はじめに

既存構造物の補修・補強技術の開発は,ますます重要 となってきている。PC部材の一部を解体・撤去し,残り の部分を従来通りに使用する場合,緊張状態にある PC 鋼材を途中で定着する必要がある。これを中間定着(図 -1)と呼ぶ。中間定着には,従来のPC定着工法が適用で きないため,定着用膨張材(HEM)を用いた定着法が用 いられている。HEMを用いた中間定着工法の実用例とし て,JR博多駅プラットホームの改修工事が挙げられる。 この工事で使用された中間定着具(図-2)は大きく,重 いため,作業性が良いとはいえない。そこで本研究では, 施工性をより高めた新しい中間定着具の開発を行った。 2.簡易型中間定着具

簡易型中間定着具(以後,簡易型と略記)は,半割れ 鋼管とC形鋼材(図-3)とで構成され,図-4にその組立 て方法と概略を示す。

3. 膨張圧特性

試験体は,鋼管スリーブと定着長を変化させた簡易型 中間定着具であり,図-5に示す通りである。試験体1,2 の膨張圧の経時変化を図-6に示す。試験体1では60MPa の膨張圧が得られている。試験体2では,C形鋼材の膨 張圧による変形を拘束するための通し棒を挿入すること により,42MPaの膨張圧が確保できた。また,図-7より C 形鋼材のひずみ分布は,長さ方向に一定であるので, 膨張圧は一様に作用していると考えられる。以上より, 簡易型中間定着具で,定着に必要な膨張圧40MPaが得ら れることがわかった。

4 簡易型中間定着具を用いた中間定着実験

4.1 実験概要

図-5の試験体において,試験体1に鋼管スリープを用 いたのは,定着時の付着長の比較のためである。

実験手順は図-8 に示す通りである。C 点で緊張力を解 放し,中間定着を行い,その後定着性能を把握する目的 でA 点側から再度,引張荷重を与えた。緊張荷重の解放

		宁 羊 日	資格す	到中	使用したPC鋼材			実験結果													
試験体	定着具の種類	に有具の長さ	動首の 外径/	膨張圧	種類	径	規格降伏 荷重(Py)	規格引張 荷重(Pu)	設定 緊張力	初期 緊張力	緊張力解放後 の	再引張時の 引抜け荷重									
		mm 内í	内径	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa ^{1±,5}	mm	kN	kN	kN	kN	。 定着緊張力	kN
1	鋼管	400	57/43	62		207	140	359.2 (0.80Pu)	352.8	304.8 (0.67Pu)	370.4 (0.82Pu)										
2	簡易型	400		42 PC鋼棒]棒				274.4	227.4 (0.50Pu)	418.4 (0.93Pu)										
3	簡易型	300		-	- (Pfg 23 1号)	23	307	449	246.9 (0.55Pu)	280.2	253.8 (0.56Pu)	362.6 (0.80Pu)									
4	簡易型	400		45						274.4	212.4 (0.47Pu)	降伏荷重経過のため中断 391.7(0.87Pu)									
5	簡易型	400		44	PC鋼 より線	17.8	330	387	212.8 (0.55Pu)	227.5	211.4 (0.54Pu)	336.9 (0.87Pu)									

中間定着実験 試験結果-

時および再引張時に,中間定着具のひずみを計測した。

4.2 実験結果および考察

表-1 に実験結果を示す。全ての試験体において,解放 緊張力を確実に定着することができた。本実験ではアン カープレートと定着具間の膨張に伴う隙間により緊張力 が損失しているが,実際の構造物の緊張材長は本試験体 より十分長いため,緊張力の損失は小さくなるものと思 われる。次に,緊張力解放時の試験体1の軸方向のひず み分布を図-9に実線で示す。解放端からひずみが増加し, ほぼ一定となる区間が存在する。この区間がプレテンシ ョン PC での付着長に相当し,全緊張力解放時(304kN) の付着長は160mm であった。同様に,試験体4のひずみ 分布を図-10 に示す。仮緊張力解放時は,試験体1 に比 べてひずみが小さくなっている。これは,半割れ鋼管と C 形鋼材間のすべりが原因であり, さらに, C 形の厚さ が厚いためであると考えられる。なお、アンカープレー ト側でのひずみ値が減少しているのは,端部の拘束の影 響と考えられる。

図-9,図10の破線は,再引張時の挙動を表す。試験体 1,4ともに,定着荷重まで再緊張しても,ほとんど変化 しないことがわかる。試験体4では,定着荷重以上の荷 重が作用すれば,荷重の大きさに応じてひずみが増加し ている。図-11 に軸方向ひずみ分布模式図を示す。定着 荷重以上の荷重になると破線のような挙動が考えられる。 5.まとめ

本研究で得られた結果を以下にまとめる。

(1)半割れ鋼管とC形鋼材で構成する簡易型中間定着具 を開発した。

(2)C形鋼材による拘束でも,適切な膨張圧特性が得られることがわかった。

(3) 簡易型中間定着具で PC 鋼棒 23. PC 鋼より線 17.8 の所定の緊張力(0.55Pu)を定着でき,特に,試験体 4 では, PC 鋼材の規格降伏荷重以上の緊張力を定着できた。 (4) 中間定着具内には,プレテンション方式 PC と同様

図-8 中間定着実験概略図

図-9 仮緊張力解放時および再引張時の軸方向ひずみ変化 (試験体1)

図-10 仮緊張力解放時および再引張時の軸方向ひずみ変化

の付着長が存在することを鋼管スリーブ試験体で確認し, PC 鋼棒 23 で緊張力 305kNの場合の付着長は 160mm であった。

謝辞

本研究にご協力いただいた長崎大学技術職員の永藤政敏 氏に,深く感謝いたします。