地山強度低下を考慮したトンネル変状予測モデルのパラメータ同定法の提案

長崎大学工学部 学生員 〇小坂 悠樹 長崎大学工学部 正会員 蒋 宇静 長崎大学工学部 フェロー 棚橋 由彦 長崎大学大学院 学生員 関 振長

<u>1. 研究の目的と背景</u>

トンネルはその周辺地山条件が複雑に変化するため、供用されてから経時的変状が生じる.しかし一方で、岩盤 レオロジー値が入手困難であるとされるため、精度の高い変状予測解析が行われることは少なかった.本研究では、 トンネル供用後の変状メカニズムを究明するために、時間依存性モデル(Burger-MC劣化モデル)と逆解析による パラメータ同定法を提案し、トンネル変状の予測を行う.これより、変状予測値と計測データを比較・検討し、提 案モデルの有用性と逆解析によるパラメータ同定法の確認を目的とする.

2. 強度低下時間依存性モデルの概要

トンネル変状は、周辺地山の経年劣化が原因の1つであ ると考えられるため、時間の経過に伴い岩盤強度が低下 するモデルを本研究では用いる.各部はKelvinモデル、 Maxwellモデル、Mohr-Coulombモデル(MCモデル)か ら成り、KelvinモデルとMaxwellモデルの直列をBurger モデルと呼ぶ.Burger-MCモデル中のMCモデルの 粘着力 cと摩擦角 øを時間と共に低下させ、岩盤の 強度劣化を考慮することができるように修正したモ デルを、Burger-MC劣化モデルりと定義し、その構成 は図-1 に示す.

図中で、 R_{thr} は岩盤の応力状態限界係数であり、応力状態係数Rが R_{thr} 値を超えると劣化を生じ¹)、 ω_c 、 ω_o は粘着力と内部摩擦角の劣化率であり、両者の経時的変化はRに比例する²).

3.パラメータ同定法を用いたトンネル変状解析

提案した**Burger-MC**劣化モデルには **13** 個の入力 パラメータ(体積弾性係数*K*; Kelvin模型のせん断弾 性係数*G*^Kと粘性係数*η*^K; Maxwell模型のせん断弾性

係数 G^{M} と粘性係数 η^{M} ;粘着力 cと残留粘着力 c_{res} ;摩擦角 ϕ と残留摩擦角 ϕ_{res} ;ダイレーション ψ ;粘着力の劣化率 ω_{c} ; 摩擦角の劣化率 ω_{ϕ} ;応力状態限界係数 R_{thr})が含まれている.これらのパラメータの中, G^{M} , c, c_{res} , ϕ , ϕ_{res} , ψ は通常の三軸試験より求めることができるが,残りのパラメータは得られにくい.そこで,この得られにくい6個の レオロジーに関するパラメータの決定について,ニューラルネットワークの誤差逆伝搬法³(BN)と遺伝的アルゴリ ズム⁴(GA)を用いた同定法を提案する.パラメータ同定法は図 - 2に示す流れで行う.

step 1 では、ランダム的に決めたレオロジー値 P^{FL} を有限差分解析コード(FLAC^{3D})に入力し、変位 u_{kr}^{R} を出力 する. この過程を 50 回繰り返し、50 個のデータセットを得る. ここで得られた 50 個のデータセットは教師デー タとして、step2 でBNのトレーニングのために用いられる. この時、ステップ1で得たデータセット(P^{FL} 、 u_{kr}^{R}) をBNで用いるために(P^{BN} 、 u_{kr}^{BN})へと変換する. u_{kr}^{BN} をBNの望むべき出力値と設定し、入力値 P^{BN} から得られた 出力値 o^{BN} とを比較しBNの結合強度を調節する. 50 個のデータセットを用いて十分に結合強度を調節し、BNをよ く訓練する. step3 でよく訓練したBNとGAを用いて、解析モデルに必要なレオロジー値を評価する. ここでは実 例として長崎自動車道うれしのトンネル I 期線の実測値 u_{kg}^{wo} をよく訓練したBNで用いるため、 u_{kg}^{ω} に変換する. そして、ランダムに決めたレオロジー値 P^{C4} から出力値 o^{ω} を得る. 出力値 o^{ω} と u_{kg}^{ω} を比べ、GAを用いて最適なレオロジー値が選ばれる. しかし、このパラメータ同定法は事実上確率的なものであるので、step4 でBNとGAによって同定したパラメータを数値解析によって再検証する. 数値解析により計算された変位(再検証結果)と実測値を比較することで、得られたパラメータの妥当性を確認する. 天端沈下の誤差 e_{uc} は下のように定義される.

$$e_{uc} = \frac{\left\|\boldsymbol{u}_{c}^{FL} - \boldsymbol{u}_{c}^{MO}\right\|}{\left\|\boldsymbol{u}_{c}^{MO}\right\|}$$
(1)

ここに、 u_{e}^{m} は実測値、 u_{e}^{n} は数値解析結果である.なお、 $\|\|$ はベクトルの平均値を表す.スプリングライン変位 とインバート隆起の誤差 e_{us} と e_{ui} も同じように定義される.

表 - 1 BN(6,9,12)の5つの可能なレオロジー評価1)

Train No.	G^{K} (Pa)	η^{K} (Pa • s)	η^M (Pa • s)	ω_c (Pa/y)	$\omega_{\phi}(^{\mathrm{o}}/\mathrm{y})$	R_{thr}	e_{uc} (%)	e_{us} (%)	e_{ui} (%)
No1	5.96E+08	4.38E+16	2.63E+17	4.69E+04	2.70	0.61	6.9	20.1	11.3
No2	5.28E+08	4.49E+16	6.24E+17	2.25E+04	2.65	0.71	8.6	14.3	34.1
No3 (🖌)	6.04E+08	4.04E+16	3.83E+17	3.88E+04	2.84	0.49	4.0	12.1	9.3
No4	5.63E+08	4.20E+16	5.05E+17	4.49E+04	2.46	0.44	6.2	25.7	8.2
No5	7.35E+08	4.45E+16	2.27E+17	3.91E+04	3.61	0.62	5.1	19.4	7.6

(✔): 誤差が最も小さいパラメータが最適な評価として選ばれる

ー例として, BN(6,9,12) (入力層; 6 ニューロン, 中間 層; 9 ニューロン, 出力層; 12 ニューロンを表す)のネッ トワーク構造に対し, 提案されているパラメータ同定法か ら, 5 セットのレオロジーパラメータが評価された(表 - 1). これらのパラメータは, それぞれ数値解析によって再検証 され, 誤差が最も小さいNo3がBN(6,9,12)の最適評価とな る. その結果を図 - 3 に示す. 再検証した数値解析結果は 実測値をよく再現しており, 各部位での変位 (*u_c*, *u_sとu_i*) の誤差はそれぞれ 4.0%, 12.1%, 9.3%となっている.

4. 結論

提案した Burger-MC 劣化モデルとパラメータ同定法は 長崎自動車道のうれしのトンネル I 期線に適用し,トンネ ル建設後の供用期間 5 年間に生じた経時的変状のメカニズ

訓練結果の比較(BN(6,9,12)_No3)

ムを解明した.提案したパラメータ同定法は劣化予測に必要なレオロジー値を精度よく評価することができた.し かし一方,この方法は確率的手法に基づいているため,評価したレオロジー値は常に妥当であるとは限らない.し たがって,この方法を繰り返して試すことが重要である.また,数値解析結果をすべての実測値と完全に一致させ ることは難しい.それゆえ,工学的判断に従って,BN と GA から得られた評価から一番良いものを選び出すこと が必要である.トンネルは補強工事などにより実現場の状況が変わるが,岩盤のレオロジー値はそれほど変化しな いので提案したパラメータ同定法は,将来のトンネルメンテナンスに役立つ有効なものであると考える.

【参考文献】

- 1) Guan Z., Jiang Y., Tanabashi Y. and Huang H.: A new rheological model and its application in Mountain, *Tunnelling, Tunnelling and Underground Space Technology* (article in press, available online)
- 2) 里優ほか: 強度の時間依存性に着目した岩盤の解析,第18回土質工学研究発表会論文概要集, pp.817-820, 1983
- 3)矢川元基編:ニューラルネットワーク,株式会社培風館, 1992

4)古田均,杉本博之:遺伝的アルゴリズムの構造工学への応用,森北出版株式会社,1997