有明海中部海域に設置した DBF 海洋レーダの性能評価について

長崎大学工学部 学生会員〇今林 秀清 長崎大学工学部 正会員 多田 彰秀 「大学工学部 正会員 多田 彰秀 「大学工学部 正会員 多田 彰秀 「大学工学部 正会員 多田 彰秀

1. はじめに

DBF 海洋レーダを用いた有明海の表層流動特性に関する長期観測は 2005 年から行われている。現在までに、観測領域の変更や、DBF 海洋レーダ設置地点の移動などのいくつかの変更点がある。そのため、本研究では改めて DBF 海洋レーダから得られたデータと ADCP を用いた観測から得られたデータとの比較を行い、DBF 海洋レーダの性能評価を行う。

2. 現地観測の概要

2-1 ADCP を用いた流速の観測

諫早湾の概略および観測点を図-1に示す。2007 年 8 月 12 日(大潮期)に諫早湾湾口部の流況特性を明らかにするため、E-E'ライン(約 9 km上で、Workhorse-ADCP1200kHz(RD Instrument 社製)を用いた曳航観測を行

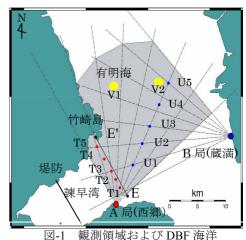


図-1 観測領域および DBF 海洋 レーダ位置および観測地点

った。曳航観測においては、船の航行速度は約 6 ノットに保ち、E-E'ラインを約 50 分かけて計測した。さらに、DBF 海洋レーダによる観測データの測定精度を検証するため,図-1 中 U1~U5(2007 年 10 月 26 日)において船を係留して 10 分間のスポット観測を行った。スポット観測においては、ハイスピードモードを採用し,層厚を 0.15m として約 1 秒間隔でデータの取得を行った。

2-2 DBF 海洋レーダによる潮流流速の観測

本研究で用いた DBF 海洋レーダは、(財)電力中央研究所が開発した VHF 帯の電波を用いた高性能沿岸海洋レーダであり、25km 四方の表層流速(水深 0.3m)を 500m 間隔で 15 分毎に観測できる陸上リモートセンシング装置である。図-1 に示すように、DBF 海洋レーダを西郷(A 局:長崎県雲仙市)と蔵満(B 局:熊本県荒尾市)に設置した。各局は 1 本の送信アンテナと 8 本の受信アンテナおよび観測データ処理コンテナから構成されている。各局の送信アンテナより 15 分間隔で A 局と B 局交互に送信を行い、水表面から反射される電波のドップラースペクトルを受信するとともに、その一次散乱のピークから表層部(水表面下 0.3m)の流速および流向が求められる。

2-3 漂流ブイによる表層流の観測

2007年10月25日、漂流ブイを用いてラグランジュ的な潮流観測を実施した。観測ではメモリー式 GPS(GARMIN 社製)を内蔵したブイを使用し、測定間隔を30秒に設定し、緯度・経度の記録を行った。ブイは GPS を取り付けるための直径100mm の半球型のドームを設けた直径300mm、高さ50mm の円柱形の浮体と、幅225mm、高さ450mm の塩化ビニル製の板4枚を十字に組み合わせた抵抗体から構成されている 11 。全高は約700mm で海水に浮かべた場合、約100mm が水面上に出るように調節した。観測では、図-1中の点 V1に2個のブイ(Buoy-1,Buoy-2)、点 V2に1個のブイ(Buoy-3)を投入し、Buoy-1,Buoy-2 に関しては8時15分から15時まで、Buoy-3に関しては8時30分から14時45分まで観測を行った。

3. 観測結果と考察

3-1 ADCP を用いた曳航観測

2007年8月12日に実施されたADCPによる曳航観測のデータに基づいて、E-E'ラインでの流速ベクトルの水平分布を図-2に示す。図-2(a)の上げ潮最強時において、神代地先約2kmの沖合で最大流速が出現し、有明海から諫早湾に海水が流入している。この時の最大流速は78cm/sである。著者らが実施した観測結果より、諫早湾内の上げ潮最強時の流動は、島原半島側からの流れが卓越していることが確認できる。同図の竹崎地先から約1km沖

までの区間では、有明海への流出が見られる。さらに、図-2(b)の下げ潮最強時においても、神代地先から約 2km 沖で最大流速が出現するとともに、上げ潮最強時同様に竹崎の約 1km 地先で有明海に流出していることが確認できる。この時の最大流速は 81cm/s である。

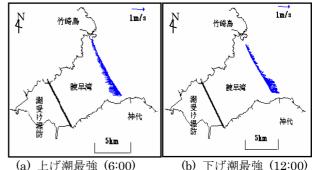
3-2 ADCP と DBF 海洋レーダの比較

図-3 に ADCP と DBF 海洋レーダの流速の相関を示す。 ADCP 流速データは U1~U5 で測定した値を用いる。 DBF 海洋レーダのデータは同時刻の最も近いポイントを選定している。 相関係数 R、傾き a、切片 b、標準誤差 STE とし記載した。 図より、相関係数がそれぞれ 0.93 および 0.92 となっており、 DBF 海洋レーダは信頼できるといえる。

3-3 DBF 海洋レーダの流速とブイ移動速度の比較

図-4 は時空間補完され 500m 西方格子上に求められた DBF 海洋レーダの流速とブイの移動速度を比較したものである。記録された漂流ブイの位置と移動速度

を 15 分間隔で抜粋し、漂流ブイに近接する格子上の DBF 海洋レーダ流速を比較している。移動速度の変動特性はよく再現されているが、DBF 海洋レーダに対して流速を低く捉える傾向が見られる。図-5 は 15 分間隔、500m に時空間補完された DBF 海洋レーダの流速データを基に Buoy-1 の投入地点に配置された仮想粒子追跡の結果である。ほぼ同様の移動傾向を示している。Bouy-2,3 においても同様の結果を得た。


4. おわりに

本研究では、DBF 海洋レーダの性能評価を行った。その結果、DBF 海洋レーダと ADCP から得られた流速値は概ね一致しており、良い相関関係であることが確認できた。また、漂流ブイと DBF 海洋レーダから得られた流速値の変動特性においても良い相関を示した。よって、DBF 海洋データの精度の高さが証明された。

参考文献

1)宮田明子、田井明、重田真一、斎田倫範、矢野真一郎、小松利光 (2006): 漂流ブイを用いた島原半島沿岸の物質輸送に関する観測、 土木学会西部支部 pp287-288

2) 中辻啓二、西田修三、清水隆夫、坂井伸一,松山昌史、坪野考樹、森信人(2004)浮遊物の挙動予測に向けた海洋レーダの適用性評価,海岸工学論文集,第51巻

(a) 上げ潮最強 (6:00) (b) 下げ潮最強 (12: 図-2 諫早湾湾口部における表層水平断面流速

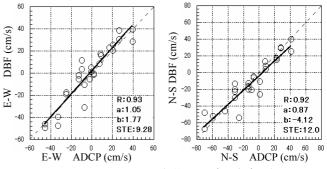


図-3 ADCP と DBF 海洋レーダの流速の相関 (左図;東西方向、右図;南北方向)

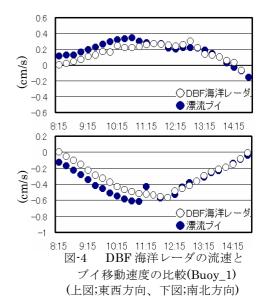


図-5 漂流ブイの軌跡と DBF 海洋レーダ による粒子追跡の結果との比較(Buoy_1)