三次元写真計測および常時微動振動計測による固有振動解析

長崎大学大学院	学生会員	○本郷	真樹
長崎大学工学部	非会員	椋木	章弘

1. はじめに

構造物の補修・補強を行うには、現況調査および安全性 を診断する必要がある.しかし、適確な調査法や試験法、 診断法は確立されていない.構造物の調査には、高所作業 を伴い、足場などを必要とする場合が多く、危険かつ不経 済である.そのため、非接触かつ遠隔計測による診断技術 を用いることが強く望まれている.また、近年、頻発して いる大規模地震に対する耐震性能を評価すると、補修・補 強を講じなければならない場合が多数存在する.そこで、 非線形地震応答解析を用いて解析を行う場合を考えると、 モデルを作成する必要がある.また、変状を生じていたり、 図面がない場合も多く、容易に作成することはできない.

本研究では、デジタルカメラを用いた三次元計測手法に より三次元形状計測を行い、また、その形状データをもと にFEメッシュを作成し、固有振動解析を行った.また、非 接触かつ遠隔測定が可能なレーザドップラ速度計を用いて 実構造物の固有振動の計測を行い、そして、解析結果と計 測値との固有振動数の比較を行った.

2. 三次元写真計測

2.1 計測原理

本研究で用いた三次元写真計測手法とは、市販のデジタ ルカメラを用いて撮影した画像データを利用して、さまざ まな対象物を三次元デジタル化する手法である. その手法 は大別すると、受動型と能動型に分けられる. 受動型の計 測手法は計測対象となる構造物に対して,計測の補助とな る特定の光や電波等を照射することなく計測を行う手法で ある. それに対して, 能動型の計測手法は, 三次元計測を するために光, 電波, 音波等を対象の物体に照射し, その 情報を利用して計測を行う手法である.本研究で用いた計 測手法は受動型の計測手法であるステレオ法を用いた. こ のステレオ法は、2枚以上の画像データを利用して計測を行 う手法である.また、この計測手法で計測できる範囲は、 画像内に写っている部分である. そのため画像内に収める ことができない死角となっている箇所の計測を行うことは できない. そのため, 撮影位置や方向を変えて計測を行い, それぞれ計測したデータを張り合わせることで、死角のな い構造物全体の立体データを作成することができる.

2.2 計測概要および計測結果

三次元写真計測手法を用いて,昭和52年に建造された長 崎大学文教キャンパスにあるボイラー室に併設する煙突の 計測を行った(図1(a)). その寸法等の概略を図1(b)に示す.

長崎大学工学部	正会員	松田	浩
長崎大学工学部	非会員	山下	務

計測には600万画素のデジタルカメラを用い撮影を行った. 計測は4方向から行い,各方向3枚,計12枚の写真を撮影した.各方向3枚の画像を用いて形状計測を行い,それぞれの 方向からのデータを張り合わせることで,煙突全体の形状 データ(図1(c))を作成した.

形状計測において、図 1(b)に示すA点-B点間の鉛直距 離を図面と計測データでの比較を行った.図面上の値は 31.22mに対して、形状データの計測値は 30.74mであり、誤 差が 1.69%となった.このことから高精度な形状計測がで き、三次元データを作成することができた.この計測デー タを用いて固有振動解析を行った.

3. 固有振動解析

煙突の振動特性を調べるために固有振動解析を行った. 写真計測により得られた形状データをもとに作成したFEメ ッシュを図 2 に示す. 材料特性はコンクリートの材料特性 を用いた(弾性係数:22.43GPa,ポアソン比:0.2,引張強度: 1.76MPa,単位体積重量:24kN/m³).また,境界条件は下端 を完全固定とした.

固有振動解析を行った結果を表1に示す.図3には1次 と2次の固有モード図を示す.これより,x方向,y方向と も1次および2次が大きな割合を占めていることがわかる.

有効質量比 表1 mode 周波数(Hz) 周期(s) v 1次 1.66 10.40 36.5% 36.6% 2次 7.26 45.63 8.7% 8.6% 3次 17.44 109.58 5.0% 4.7% 4次 20.58 129.28 0.0% 0.0% 26.98 169 55 5次 0.0% 0.0% ※離れる場合 LDV 周波数:低くなる ※近づく場合 対象物 www.LDV ******** 周波数:高くなる

4. レーザドップラ速度計を用いた振動計測 4.1 計測原理

図4 ドップラ効果

レーザドップラ速度計の計測原理としては、レーザ光の ドップラ効果を基本原理としている(図 4). 運動する物体 にレーザ光を照射してその反射光を受光し、ドップラ効果 によるレーザ光の周波数変化を計測している. 今,レーザ 光(入射光)の周波数をf₀、波長を λ、物体の速度をv、入射光 と物体の運動方向とのなす角を θ とすると、物体からの反 射光の周波数f₄は次式となる.

 $f_r = \frac{\lambda_0 \cdot f_0 + v \cdot \cos \theta}{\lambda_0 \cdot f_0 - v \cdot \cos \theta} \cdot f_0$

よって、入射光に対する反射光の周波数の変化量faは

$$f_d = f_r - f_0 = \frac{2\nu \cdot \cos\theta}{\lambda_0 \cdot f_0 - \nu \cdot \cos\theta} \cdot f_0$$

ここで、 $\lambda_0 >> v \cdot \cos \theta$ より、 f_d は次式で近似される.

 $f_d \approx 2v \cdot \cos\theta / \lambda$

レーザ光の波長 λ_0 は安定しているため、 f_d とvは比例関係に ある. そのため f_d から物体のvを直接求めることができる. さらにそれを微分することで加速度、積分することで変位 を求めることができ、また、FFT処理を行うことで、物体の 固有振動数を求めることができる. レーザ光を照射できる ものであれば計測が可能である.本研究で用いた計測器で は、数m~数十mまでの計測が可能であり、100mでの計測 が可能であることを確認できた.

4.2 性能照查

性能照査として、図5に示す試験片(A-type, B-type)のハ ンマリング試験を行い、固有振動数の計測を行った.計測 距離を5~50mと変え計測を行い、各距離における精度を調 べた.そして,固有振動実験による結果との比較を行った(表 2).この結果より、計測器を用いることで、距離に関わらず 高精度な計測が可能であることが確認できた.しかし、レ ーザ光は試験片表面で乱反射するため30mを超えると計測 器に戻ってくる光が弱くなり、計測が困難になった.そこ で、再帰性反射シールを貼り計測を行った.

実験値			計測値					
		実験値	計 測 距 離					
			5 m	10 m	2 0 m	30 m	40 m	50 m
A-type	周 波 数(Hz)	346.5	351.9	354.1	351.1	350.2	350.0	349.5

表2 レーザドップラ速度計の計測精度

誤差(%) 0.0 1.6 2.2 周 波 数 (Hz 2410 246 1 246 3 2473 244 3 2434 誤差(%) 0 0 2 1 22 26 14 1 0 ※30, 40, 50mには反射材を使用

4.3 煙突の振動計測

本計測器を用いて図 1(a)に示す構造物の振動計測を行った.図6にはその計測風景を示す.計測距離は約15mとし,図6中の計測点にレーザ光を照射した.本計測より得られた応答加速度を図7,FFT処理を行い,得られた応答スペクトルを図8に示す.応答スペクトルより,1次および2次の固有振動数はそれぞれ2.93Hz,13.67Hzとなり,解析値と大きく異なった.その原因としては,解析では下端を完全固定としているが,実際は地盤がバネとして働いているからだと考えられる.

5. まとめおよび今後の展望

本研究で得られた結果を以下に示す.

- ・三次元写真計測を利用することで、大規模構造物の形状 計測を行うことができ、3D デジタルイメージを作成す ることができた.
- ・作成した FE モデルは容易にプリプロセッサへインポート でき,固有振動解析を行うことができた.
- ・レーザドップラ振動計を用いることで、非接触かつ遠隔 測定が可能であることが確認できた.
- ・今回の境界条件は下端を完全固定として解析を行ったが、 レーザドップラ速度計を用いることで、より実現象に近 い境界条件を採用できることが期待できる.

参考文献

- 1. 谷尻豊寿: 画像処理入門, 1996
- 2. 大崎順彦:新・地震動のスペクトル解析入門, 1994