鋼板接着端部のはく離現象に関する検討

長崎大学 学生会員 〇山本 健太 長崎大学 正会員 松田 浩 ショーボンド建設(株) 正会員 安東 祐樹 長崎大学

1. はじめに

コンクリート部材などに、鋼板を接着して補強した際、終局時に鋼板を接着した端部からはがれが生じて 急激に剛性を失い破壊に至る場合がある.

本研究では、この鋼板のはく離現象に及ぼす接着幅 の影響や鋼板表面の挙動を把握するため、電子スペッ クルパターン干渉法(以下 ESPI)を用いた全視野ひず み計測による実験、ならびに三次元非線形有限要素法 を用いた解析を行った.

2-1. 実験概要

鋼板端部でのはく離を簡易的に評価するために,図 -1に示す両引き実験により実験を行った.供試体は, 図-2に示すコンクリートブロックに鋼板を両側に厚さ 5mmのエポキシ樹脂にて接着した供試体を製作した.な お,今回用いた材料の物性を表-1~3に示す.検討した 鋼板接着長は100mm一定とし,接着幅Bを50mm,100mm の2種類とした.ESPIの計測位置は,供試体の対称性 を考慮し,図-2に示す接着部(斜線部)の網掛け部分 の計測を行った.また,ESPIとの比較のために図-3の 事前解析で得られた鋼板表面のひずみ分布の代表箇所 に,ひずみゲージを貼り付けた.

接着幅	圧縮強度	引張強度	弾性係数	ポアソ
В	f _c '	\mathbf{f}_{t}	E _c	ン比
(mm)	(N/mm^2)	(N/mm^2)	(N/mm^2)	μ_{c}
50	15.7	1.44	1.42×10^{3}	0.16
100	13.7	1.44	1.42 ^ 10	0.10

表-2 使用鋼材の物性

表-1 コンクリートの物性

※引張強度 f_tは 0.23・f_c^{,2/3}

		鋼材		降伏点	引張強度		弹性係数	
鋼材 鉄筋 D22 鋼板 t=4.5mm			σ_{sy}		σ_{su}		Es	
			(N/mm^2) (N/mm^2)		(N/mm^2)			
			405		595	1.	93×10^{5}	
			347	443 1		1.	$.88 \times 10^{5}$	
	表-3 接着材(エポキシ樹脂)の物性						性	
	圧縮強度	引張強度	FL.	引張せん	/	弾性係数	汝	ポアソ
	f_e	σ_{ey}		断強度		E _e		ン比
	$\left(N/mm^{2} ight)$	(N/mm^2))	τ_{e} (N/mm)	²)	(N/mm ²	2)	μ_{e}
	76.8	57.9		12.6		2800		0.39

松田 浩 長崎大学 非会員 山下 務 長崎大学大学院 学生会員 浦田 美生

図-3 解析結果に基づくゲージ貼付位置

2-2. 解析概要

解析は、図-4に示すような要素平均寸法 7mm 角の8 節点アイソパラメトリック要素の1/2 対称モデルとし た.また、鋼板のはく離を再現するために、各接着部 の節点を共有せず Coulomb 摩擦の接触条件を適用した. その際に、接着部の要素間の解離条件として、限界応 力まで相対変位が生じないように拘束し、その後全応 力を開放することとした.この時の限界応力は、コン クリートの引張強度と仮定した.

2-3. 実験および解析結果

接着幅 B	供試体 No.	はく離荷重 P _{pr} (kN)		はく離強度 _{て pr} (N/mm ²)		
(mm)		実験	解析	実験	解析	
50	50-1	29		2.9		
	50-2	28.4	24.5	2.84	2.45	
	50-3	27.1		2.71		
	100-1	28.4		1.42		
100	100-2	30.17	37.6	1.51	1.88	
	100-3	35.7		1.79		
鋼板先端部 大 鋼板先端部						

表-4 はく離荷重,はく離強度一覧

図-5 破壊時ひび割れ発生状況(解析結果) 実験,解析で得られたはく離荷重,はく離強度を表-4 に示す.はく離強度は,はく離荷重を接着面積で除し た値である.これより,実験結果,および解析結果を 比較すると,接着幅によらず,ほぼ同等のはく離荷重 およびはく離強度を示した.

はく離荷重は、接着幅が大きくなると、増加する傾向 にあるが、はく離強度は減少する傾向にある.これは、 図-5 に示す解析結果から、接着幅が躯体断面幅に等し くなると、コンクリートの抵抗できる面積が減少する ためだと考えられる.

よって得られた鋼板表面の y-方向ひずみ分布図(図-6) を示す.図-6(b)より,鋼板端部から約 20mm 位置で 圧縮,約 80mm 位置で引張のひずみが生じている.こ れは,図-7 に示すように,弾性係数が小さい樹脂の変 形に伴い,鋼板表面でそれぞれ圧縮・引張が作用して いる.図-6(a)で,これを非接触全視野ひずみ計測に よって可視化することができている.

図-8 各計測方法による荷重-ひずみ曲線

つぎに,各ひずみゲージ貼付位置の実験,および解 析によって得られた,荷重-ひずみ曲線(図-8)を示す. No.1, No.2, No.3 のひずみ値の挙動は,解析,ひずみ ゲージ, ESPI において同様なひずみ挙動を得られた. しかし, ESPI のひずみ値において,No.3 の荷重 20kN 以降,および No.4 に誤差が生じた.この誤差の理由と しては,変形の大きい箇所であること,面外方向に変 形が生じたこと,また ESPI 計測において,不動点と仮 定した点が動いた可能性があることが考えられる.

3 まとめ

- 実験、および解析結果において、接着幅が大きく なると、はく離荷重は増加し、はく離強度は減少 するという結果が得られた.これは、躯体の抵抗 断面の減少によるものであると考えられる.
- ESPIを用いた非接触全視野ひずみ計測により、樹 脂の変形に伴う鋼板表面に生じるひずみを可視化 することができた.
- 3. ひずみ計測において, ESPI, ひずみゲージによる 計測, ならびに解析結果において, 同様のひずみ 挙動が得られた.

今後は,非接触全視野ひずみ計測を用いて,コンク リート部分のひずみ挙動についても可視化を行い,接 着幅と躯体断面幅の関係についての検討を行う.また, 接着幅の異なる鋼板を作製し,接着幅とはく離強度の 関係についてもさらなる検討を行う.