裂田水路における護岸改修に伴う絶滅危惧種スナヤツメへの影響把握に関する研究

福岡大学工学部 学生員〇神尾章記 福岡大学工学部 正会員 渡辺亮一福岡大学工学部 正会員 山崎惟義 九州大学大学院 正会員 島谷幸宏

1. はじめに

裂田水路は、その由来が日本書紀に記されている歴史的に非常に 貴重な水路である。また、この水路には24種類の魚類が生息して おり、その中には福岡県のレッドデータブックに掲載されているも のが 8 種確認されており、スナヤツメ (Lethenteron reissneri) も 含まれている。スナヤツメはヤツメウナギ目ヤツメウナギ科に属し、 一生を河川で過ごす。生息場所は成長段階によって異なり、幼生期 には砂泥中に住み、成体期には河岸に繁茂した草本類の茎や根の隙 間に隠れたり、浮石の下に潜り込んで過ごすといわれている。しか しながら、その生活様式の特異さから、河川における改修が行われ た場合にどのような影響を受けるかはこれまで明らかにされてい ない。スナヤツメは流程が約 10km にも満たない河川には生息しな い場合が多いが、裂田水路では数 km という短い区間にその存在が確認 されている。裂田水路でスナヤツメが生息している区間は、平成15年 ~19 年にかけて水環境保全事業で護岸改修された。本研究の目的は、 改修前後で河床材料の粒度分布がどのように変化したかを把握し、それ に応じてスナヤツメの生息量が変化したか、およびスナヤツメが好む河 床材料に関しての選好性を実験的に確認することにある。

2. 調査概要

2.1 調査地点

図1は、調査を行った区間を示している。A、B、C、D、E 地点の計6 地点を調査地点に設定し、ひとつの調査地点の区間長を 5mとして調査を行った。図2は、各地点の断面形状を模式的に示している。

2.2 調査方法

物理環境調査: 水路幅と水面幅を測定し水面幅を 6 分割する。右岸、左岸からそれぞれ 20cm、40cm の測定点を含め、計 9 地点を測定。測定は、水深、流速、河床材料の 3 項目を行った。縦断方向に 2.5m ピッチで計 3 断面測定した。流速計は電磁流速計を用いた。

底質調査:調査を行う地点の底質を左岸、中央、右岸の3つのポイントで河床材料を採取した。土砂は研究室に持ち帰った後、ふるい分け試験を行った。ふるい目は9.5、4.75、2、0.85、0.425、0.25、0.106、0.075 mmのものを使用した。9.5 mm以上の粒形のレキは、ふるい目 19 mmのものを通過したものとして考えた。

選好性実験: 2 mm以上の砂と 2 mm以下の砂を水槽内で分け、スナヤツメ を 10 匹離し、<math>1 時間でどちらに潜るかの実験 を 5 回行った。また <math>2 mm 以上の砂と $0.85 \text{ mm以下の砂で同様の実験を行った。この結果をもとに、 選好値を表した。(この時のスナヤツメのサイズは <math>5 \text{ cm} \sim 10 \text{ cm}$ である。)

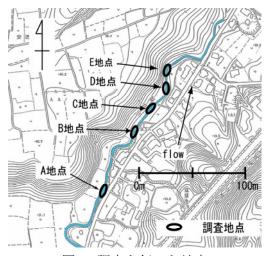


図1 調査を行った地点

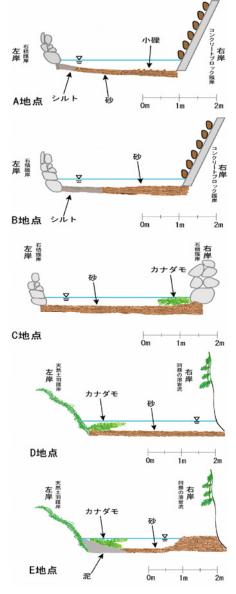


図2 各地点の横断図

3. 調査結果

図3はD地点の改修前後の粒径加積曲線を表している。この図から、護岸改修前後で粒径 4.75mm 以上の粒度分布はほとんど変化していないことがわかる。それに対して、2mm 以下の細粒分は改修後、減少していることがわかる。体長 5cm 以上のスナヤツメは粒径 2mm 未満の底質を好み、5cm に満たない小型個体は粒径 0.125mm 以下の砂が 50%程度の割合で含まれている底質を好むと言われている。この細粒分の変化がスナヤツメの生息に影響を与えたと考えられる。このことから、D 地点は改修後、体長にかかわらずスナヤツメが住みにくい環境に変化したと考えられ、実際の調査でも改修後は個体を確認することは出来なかった。図4はE地点の粒径加積曲線を表している。E 地点は今回の調査で新たに生息が確認された地点である。この図から、E 地点はそのほとんどの河床材料が2 mm以下の砂で構成されており、スナヤツメが住みやすい環境にあることが分かる。しかし0.125 mm以下の砂は10%未満であり、5 cm未満のスナヤツメが生息しやすい環境には、なっていないことがわかる。

表 1 はスナヤツメの選好性実験結果を表している。この表から、2 mm以上の砂と 2 mm以下の砂で実験を行った場合では、スナヤツメが 2 mm以上の砂に潜らず(写真 1)、2 mm以下の方を好んだことがわかる。しかし、砂に潜れないスナヤツメが 15 匹いた。次に、表 2 は、2 mm以上の砂と 0.85 mm以下の砂の場合で行った実験結果を示している。この表から、ほとんど全てのスナヤツメが 0.85 mm以下の砂を好むことが分かった(写真 2)。以上のことから、5 cm以上のスナヤツメは 2 mm以下ではなく、より細かい 0.85 mm以下の砂で構成された河床材料を好むという結果が得られた。

4. おわりに

今回の調査によって、昨年改修された D 地点は改修前と比べ、細かい粒径が激減し、スナヤツメの生息しにくい環境に変化したと考えられる。これは護岸改修に伴う流れの変化が、河床を構成する材料に影響を与えていることが原因であると考えられる。今回 E 地点のように、ほんの一部だけ5 cm以上のスナヤツメが生息できる環境が戻ってきていたが、5 cmに満たない小型個体に好ましい生息場は回復されていなかった。また、5 cm以上のスナヤツメに好ましい環境は粒径2 mm以下の底質か好まれると考えられていたが、粒径0.85 mm以下の砂が好ましい河床材料だとわかった。しかし、今後もより詳しい粒径に対する選好性を調べる必要があると考えられる。

参考文献

- 1) 片野修・森誠一: 希少淡水魚の現在と未来~積極的保全のシナリオ~, 信 山社
- 2) 松村猛弘: 裂田水路における護岸改修が絶滅危惧種スナヤツメに与える 影響に関する研究,福岡大学工学部卒業論文,2006

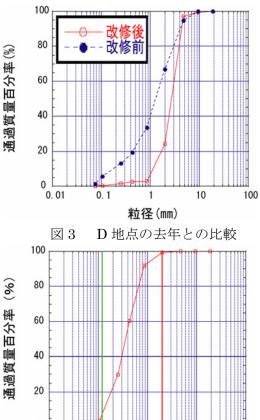


図4 E 地点の粒径加積曲線

粒径 (mm)

10

100

0.1

0.01

表1 2 mm以上と2 mm以下の砂の場合

2mm以上	2mm以下	潜らない
8匹	27匹	15匹

表2 2mm以上と0.85mm以下の砂の場合

2mm以上	0.85㎜以下	潜らない
0匹	49匹	1匹

写真1 潜らない様子

写真 2 潜る様子