CFRP せん断補強筋の補強機能に関する実験的研究

宮崎大学工学部	学生	と員	本田	祐亮		
宮崎大学大学院	Æ	員	今井富	富士夫、	中澤	隆雄
九州大学名誉教扬	х Z		太田	俊昭		

1. はじめに

CFRP は鋼材に比べて、高耐食性、高強度、軽量 などの利点を有する材料で、近年、コンクリート梁 の補強筋としての適用が検討されてきている¹⁾。

九州大学では独自に CFRP のロッドの開発を実施してきており、このロッドを主筋とするコンクリート梁 (SCF コンクリート)の曲げ耐荷力に関する検討を実験的・解析的に行ってきている²⁾。

コンクリート梁の破壊形式は曲げ破壊とせん断破 壊に大別できるが、本報告は同様の CFRP のせん断 補強筋の機能を実験的に検討したもので、本実験で は、CFRP の高強度特性を活かすため、コンクリー トも高強度なものを使用した。

2. 供試体の概要

本実験で使用した供試体は図-1に示すように、 2 点対称載荷するもので、(せん断支間/有効高さ =a/d)を1.5と2.0の2種類について作成した。せん 断支間のスターラップの配置は d/2とし、スターラ ップは a/d=1.5では2本、a/d=2.0では3本となる。

使用したコンクリートは高流度・高強度コンクリ ートでスランプフローおよび圧縮強度は、それぞれ 62.5cm(目標値 65cm)、66N/mm²(目標値 60N/mm2) となった。

供試体の補強筋には、主筋とスターラップには CFRP を、圧縮鉄筋には φ 6 の丸鋼を使用している。 主筋はロッドの周囲に繊維を巻き付けたリブ付の円

表-1 コンクリート配合									
単位重量(kg/mm ³)									
水	セ	ミメント	糸	田骨材	米	目骨材 炭カル		減水材	
W		С		S		G	G F		AF
165		423		867		867 1)0	3.7
表-2 材料定数(単位:N、mm ²)									
圧縮	圧縮 引張		曲げ	/	- 弾性係数		ポアソン比		
66.0		2.5		7.3		4.4×10^{4}		0.2	
CFRP									
		断面利	断面積 引張引		鱼度 弹性係数		性係数		
-	主筋 61.5		61.5		2300		1.47×10^{5}		
スタ・		ラップ	_	8.0	2300 1.4		$1 \sim 10$		

形断面で、スターラップは厚さ 1mm の平型断面と なっている。写真-1に補強筋を示す。

表-1にはコンクリートの配合表を、表-2 には コンクリートと CFRP の材料定数を表記している。

表-1での「炭カル」は炭酸カルシウムを意味している。

コンクリートの各種の強度について検討する。 以下の式は、コンクリートの設計用値である³⁾。

設計引張強度: $f_t = 0.23 f_{ck}^{\prime 2/3} / \gamma_c$ (1)

設計曲げ強度: $f_b = 0.42 f_{ck}^{\prime 2/3} / \gamma_c$ (2)

上記の式の圧縮強度の特性値に実験で得られた圧 縮強度 66N/mm²を、材料係数に1を代入すると、引 張強度は3.8 N/mm²、曲げ強度は6.9 N/mm²となる。 表-2に示す材料試験で得られた引張強度と曲げ 強度を式(1)と式(2)の結果と比較すると、引張強度 は 65%と低くなっており、曲げ強度は 106%と高くな っている。

<u>3.実験結果と考察</u>

3.1 変形挙動

図-2は a/d=2.0 の場合の供試体の荷重に対する 梁中央点たわみを示したものである。図から、図中 の太い実線はコンクリートの全断面を有効とした場 合の梁理論による荷重-たわみ曲線であり、破線は 引張側コンクリートを無視した理論値である。

図から明らかなように、引張荷重 30kN 近傍まで は全断面有効の理論値と実験は一致しており、それ 以降は引張側コンクリートを無視した理論値とほぼ 一致していることが判る。

実験でのひび割れ目視観察では、荷重 25kN で曲 げ支間に曲げひび割れを、荷重 70kN でせん断支間 の斜めひび割れを確認した。曲げひび割れの理論発 生荷重は 40kNで、実験のひび割れ発生荷重は低い 値となった。

実験結果から判るように、供試体は曲げひび割れ 発生後、中央点たわみはほぼ線形に変化しており、 荷重 171kN 直後に脆性的に破壊した。斜めひび割れ は荷重 160kNあたりからひび割れ幅が大きくなっ ていた。

破壊状況を示したものが写真-2である。供試体 右側のせん断支間において、コンクリートが大きく 剥落している。写真の剥落部にみえる黒い線がスタ ーラップで、破壊部のスターラップは主筋の接合部 で破断していた。

写真-2 破壊状況(a/d=2.0)

3.2 耐荷力と終局荷重

表-3に理論と実験による耐荷力と破壊形式につ いて整理した。

a/d=2.0 では理論的には曲げ耐荷力がせん断耐荷 力を若干下回るものとなっているが、ほぼ同値であ り、ここでの供試体はせん断破壊となっている。ま た、a/d=1.5 では実験は理論値を 10%程度上回る値 でせん断破壊した。

表-3 耐荷力(kN)

	理言	論値	安殿店	动病成于			
a/d	曲げ	せん断	夫厥恒	破壊形式			
1.5	224	176	196	せん断破壊			
2.0	168	176	171	せん断破壊			

※ せん断耐荷力の分担力(分担率) コンクリート:20kN(11%)、スターラップ:156kN(89%)

<u>4. まとめ</u>

本報告は CFRP をスターラップとして利用した場 合のせん断補強について実験的に検討したもので、 その結果、CFRP スターラップのせん断補強は通常 の梁理論で得られる耐荷力とほぼ合致することが明 らかとなった。

本実験を遂行するにあたり、CFRPロッドなどの提 供やご助言を頂いた九州大学工学研究院の佐島隆生 先生ならびに山口浩平先生に感謝の意を表します。 さらに、コンクリートの打設にご協力を頂きました 和光コンクリート工業㈱の皆様にも深謝いたします。

<u>5. 参考文献</u>

- 1) 例えば、R.THAMRIN, T.KAKU: Bond strength of CFRP rods in simply supported RC beam with hanging region, Vol.27, No.2, pp.733-738, 2005
- 山口浩平、日野伸一、R.Djamaluddin、太田俊昭: 連続炭素繊維を補強筋に用いたエコセメントコ ンクリートはりの曲げ挙動、土木学会第58回年 次学術講演会、V-584、pp.1165-1166、2005
- 3) 大和竹史:鉄筋コンクリート構造、共立出版、 p.20、1999