PCM 吹付け工法による既設 RC 橋脚の耐震補強に関する実験的研究

(株)さとうベネック 正会員 中村智 九州大学大学院 正会員 山口浩平 (株)さとうベネック 非会員 石田耕生

九州大学大学院 正会員 日野伸一 日鉄コンポジット(株) 非会員 谷口硯士 (株)さとうベネック 正会員 衛藤誠

1.まえがき

従来のポリマーセメントモルタル (以下 PCM) 巻立てによる既 設RC橋脚の耐震補強工法には左官工法,充填工法等があるが,こ れらの工法は一度に施工できる範囲が狭く、品質の均一化が難しい 等の問題点がある、そこで本工法では、PCM 巻立てを吹付け工法 によって行い、作業効率の向上と品質の均一化を図った、その上で PCM 吹付け工法の耐震補強効果を確認するため,地震時を想定し た正負交番載荷試験を行い,本工法の有用性について検証した.

2.試験方法

(1)供試体

表1に供試体の種類,図1に形状,図2に基部詳細図を示す. 本実験に使用した供試体は No.1~No.7 までの 7 体である. 形状 は上下にフーチングを有する橋脚型で,柱部高 1600mm,断面形 状 300 × 300mm で実橋を約 1/5 スケールで模型化した.

補強筋に関して No.1 は無補強, No.2~5 は柱部に軸方向鉄筋 (D16)と帯鉄筋(D10)を補強した. No.6 は鉄筋による補強と 等価になるよう CF シート(200g/m²)を軸方向に 4 層 , 帯方向に 1 層巻立て, No.7 は CF グリッド (CR6) を 2 層補強した.

曲げ補強に関して No.2,4,6 は軸方向鉄筋を下フーチングに設 けた 26mm のアンカー孔にエポキシ樹脂を用いて定着した. No.3.5.7 は基部の軸方向鉄筋は非定着とした.

PCM の吹付け厚は帯補強筋からのかぶりが 10mm となるよう No.2~6 は 36mm, No7 は 18mm とした. No.2,3,6,7 には吹付け 材料として高強度 PCM を, No.4,5 には低弾性 PCM を用いた.

表 2 に本試験で使用した材料特性値を示す.表中の設計とは道 示 1) に基づき定めた値,実測とは載荷試験時の材料試験値である. (2)載荷方法

載荷方法として 100kN の一定軸力(コンクリートの設計基準 強度の 5.3% , =1.1N/mm²) を導入した後に正負の水平荷重を 与えた. 載荷点の位置は供試体基部から 2555mm の位置である. 正負交番載荷については変位制御とした .まず正側の変位を増加 させ,ひび割れ発生時の変位をひび割れ時変位(cr)と定義し 負側にも同じ変位を入力した.再び正側の変位を増加させ,基部 のフーチングに定着した軸方向鉄筋ひずみが降伏ひずみに達し た時の変位を降伏変位(y)と定義し,負側にも同じ変位を入 力した.その後は yの整数倍で1サイクルずつ変位振幅を増加 させながら正負交番に水平載荷を繰返した.

供試体の種類 吹付け材料 基部定着 供試体 補強筋

# TA TIT	PCM	11002,100	
No.1	-	(無補強)	-
No.2	高強度	鉄筋	有
No.3	高強度	鉄筋	無
No.4	低弾性	鉄筋	有
No.5	低弾性	鉄筋	無
No.6	高強度	CFシートと鉄筋	有
No.7	高強度	CFグリッド	無

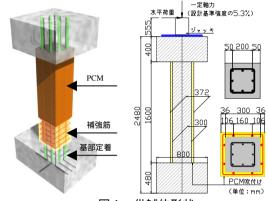


図 1 供試体形状

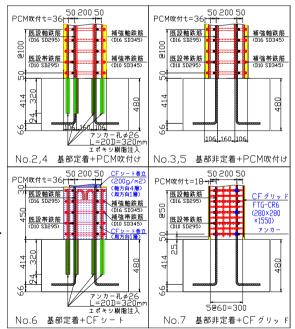


図 2 基部詳細図 表 2 材料特性值

コンクリート		N/mm ²)	高強度PCM	(N/mm^2)
項目	設計	実測	項目	設計	実測
設計基準強度	21.0	27.4	設計基準強度	47.0	47.0
ヤング係数(×10 ⁴)	2.35	2.78	ヤング係数(×10 ⁴)	2.17	2.17

鉄筋	(N/mm ²)	低弾性PCM	(N/mm ²)		
項目	設計	実測	項目	設計	実測	
SD295の降伏強度	295	350	設計基準強度	36.0	45.6	
SD345の降伏強度	345	400	ヤング係数(×10 ⁴)	1.45	1.66	
ヤング係数(×10 ⁵)	2.0	2.0				

No.2,6

水平変位(mm) 図3 設計値

No.1

No.5

No.7

No.4

No.5

60

60

0

3. 試験結果および考察

図 3 に設計値を示す.単柱式 RC 橋脚のひび割れ水平荷重 Pcr および降伏水平 荷重 Py および終局水平荷重 Pu 並びにひび割れ変位 cr および降伏変位 y およ $\stackrel{(N_c)}{\to}$ 40 び終局変位 u を道示 に規定される条件により算出した.但し,計算に用いた 擦 材料定数は設計材料定数である.同図より,無補強に比べいずれの供試体も剛性 $\stackrel{(N_c)}{\to}$ 20 が向上し,曲げ補強した No.2,4,6 は水平耐力が向上する.

写真 1 に破壊性状を,図 4 に包絡線を,表 3 に試験結果を示す.水平耐力については,今回の試験では PCM 材料による差異は殆どみられず,無補強 (No.1)に比べ基部定着補強 (No.2,4,6)は $2.2 \sim 2.4$ 倍,基部非定着補強 (No.3,5,7)は $1.3 \sim 1.4$ 倍の結果となった.No.2 に関しては一部の基部定着筋の抜出しが起ったため,設計値よりも若干小さい値となったが,その他はほぼ一致していた.またいずれの供試体も剛性が向上していた.

次に塑性率について考察する .塑性率とは最大水平荷重の 80%に達した時の変位を終局変位 u'とし,降伏変位 y で除した値 (μ = u'/ y) である . 結果は ,本来靭性のある無補強供試体(No.1)と比較しても ,補強供試体($No.2\sim No.7$)は $4.3\sim 9.2$ を示し,いずれも道示 に規定される曲げ破壊型 RC 橋脚の許容塑性率 $2.1\sim 3.8$ を満たしており,十分な靭性を有していることがわかった.また終局変位 u'までの P- 曲線で囲まれた部分の面積をエネルギー吸収能と定義すれば,全補強供試体が無補強のものを $1.4\sim 3.3$ 倍上回っていることが確認された.

破壊性状は ,軸方向補強鉄筋を基部定着した No.2,4 は塑性ヒンジ形成領域の

鉄筋が座屈し、かぶりが剥落して耐力を失った.基部非定着のNo.3,5,7は、補強筋の座屈やかぶりの剥落は見られなかったが、フーチングとPCMとの間に15mm程度の開口が認められた.No.6 は基部に巻立てた帯方向 CF シートがPCMのかぶり剥落を抑制し、損傷が限定的なものに留まった.

4.まとめ

正負交番載荷試験の結果,無補強供試体(No.1)に比べ,基部定着補強供試体(No.2,4,6)は2.2~2.4倍

基部非定着補強供試体 (No.3,5,7) は 1.3~1.4 倍の水平耐力の増加が認められた.また,いずれの補強供試体もエネルギー吸収率が向上しており,急激に荷重が低下することなく,十分な靭性を有していることが確認できた.またこれらの試験結果は設計値とほぼ同様の挙動を示しており,PCM 吹付け施工による耐震補強効果が確認された.

参考文献 1) 日本道路協会:道路橋示方書・同解説 耐震設計編 H14.3

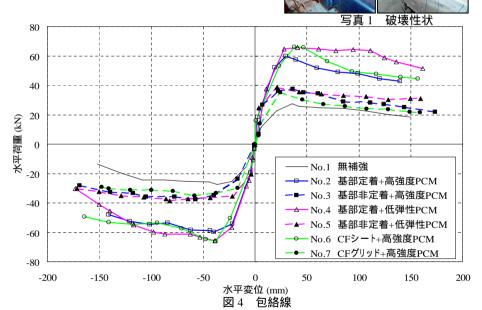


表 3 試験結果

	仕様	降伏			最大荷重		エネルギー	
供試体		荷重 (kN)		变位 (mm)	(kN)	塑性率	吸収能 (kN・m)	
		実験値	設計値	実験値	実験値			
No.1	無補強	25.3	23.6	21.5	27.3	5.9	4.9	
No.2	基部定着 + 高強度PCM	52.2	52.9	19.7	60.0	5.8	12.1	
No.3	基部非定着 + 高強度PCM	36.0	30.2	19.0	37.6	6.4	7.1	
No.4	基部定着 + 低弾性PCM	37.4	51.5	14.5	65.9	9.2	14.4	
No.5	基部非定着 + 低弾性PCM	38.7	29.1	21.4	38.7	5.5	8.7	
No.6	基部定着 + CFシート	53.2	52.9	23.4	66.1	4.3	11.0	
No.7	基部非定着 + CFグリッド	35.0	30.2	20.7	35.0	4.7	6.2	