光学的全視野計測法による RC はりのひび割れ計測

長崎大学大学院	学生会員	浜岡	広
長崎大学大学院	学生会員	中島	朋史

1. はじめに

鉄筋コンクリートにおいて一般にひずみを計測する際, 電気抵抗線ひずみゲージが用いられている.しかし,ひず みゲージでは,ひび割れ発生後の信頼性や計測範囲が局所 的になるなど,ひび割れの追及には困難である.

本研究では, ESPI 計測, およびデジタル画像相関法を 用いて, RC はりのひび割れの発生,進展過程の可視化を 目的とし,せん断破壊する RC はりの曲げ試験を実施した.

2. 計測概要

2.1 ESPI 計測

ESPI計測は,レーザ光を照射することにより非接触で計測 対象物全体のひずみ分布の計測が可能である.図1に示す光学 系において,対象物が変化すると位相差が生じ,干渉強度の 変化によりスペックルは明暗を変える.ここで,変形前図2(a) と変形後図2(b)のスッペクルパターンの差画像を表示させる と,図2(c)に示す干渉縞が得られる.ESPIでは,この縞をも とに変位が得られ,変位分布からひずみ分布等を計算する.

2.2 デジタル画像相関法

CCDカメラのような2台のデジタルカメラで撮影した,変 形前後の計測対象物表面の画像を画像処理することで,画像 全体に渡って三次元変形分布を求め,変位分布からひずみ分 布等を計算する.本実験に用いた計測器を図3に示す.

図3.計測器

長崎大学	正会員	松田	浩
長崎大学	非会員	山下	務

3. 試験概要

試験体寸法,計測範囲,および試験体設置状況を図4に示 す.試験体中央下部にひび割れを誘発させるために切欠きを 設け,試験中は,切欠き先端部に取り付けたクリップゲージ によりひび割れ幅を計測した.また,計測面の裏側には 60 mmの電気抵抗線ひずみゲージを貼付け,鉄筋位置でのひずみ を計測した.

図4.試験体概要

4. 試験結果

4.1 ESPI 計測による試験結果

クリップゲージによって計測されたひび割れ幅と, ESPI 計測により得られたひび割れ幅との比較を図5に示す.また, ひずみゲージと ESPI 計測により得られたひずみとの比較を 図6に示す.

ESPI 計測により得られたひび割れ幅とひずみはそれぞれのゲージの値と,破壊前までほぼ一致していることが分かる.

また, ESPI 計測により得られた各荷重段階におけるひず み分布の進展を図7に示す.図中のx方向のひずみ分布は, 荷重ひずみ曲線中の ~ の各荷重段階におけるひずみの分 布を示している.

ESPI 計測により,各荷重段階におけるひずみ分布の進展 を計測範囲全体で得ることができ,ひび割れ発生,進展を確 認できた.

図7.各荷重段階における ESPI 計測によるひずみ分布

4.2 デジタル画像相関法による試験結果

ESPI 計測と同様,デジタル画像相関法により得られたひ び割れ幅,ひずみの比較,および各荷重段階におけるひずみ 分布の進展を図8~図10に示す.ひび割れ幅,ひずみともゲ ージの値と終始一致している.ひずみ分布については,ESPI 計測同様ひび割れ発生,進展を確認できた.さらに,曲げひ び割れ先端部から発生した斜めひび割れも確認できた.

図8.ひび割れ幅の比較

ひずみ分布

5.まとめ

本実験では, ESPI 計測およびデジタル画像相関法を用い て, 切欠きを有する RC はり試験体のひび割れ発生, 進展過 程の非接触全視野計測を行った.その結果は,以下のように まとめられる.

- ESPI 計測およびデジタル画像相関法を用いることにより、ほぼリアルタイムかつ非接触でひずみ分布を取得することができ、ひび割れの発生、進展の可視化をすることができた。
- 2. 任意の領域でのひび割れ幅,およびひずみ値を非接触により算出することができ,ゲージを用いない新たな計測 手法の一つとしての可能性を見出せることができた.
- 3.曲げひび割れの発生,進展だけでなく,斜めひび割れの 発生,進展の可視化もでき,曲げ破壊やせん断破壊の破 壊メカニズムの解明につながる結果を得ることができた.

参考文献

高橋賞監修:フォトメカニクス 光学的手法による応力, ひずみならびに変形の解析,山海堂,1997