## FEM 解析を用いた偏心傾斜荷重に対するサクション基礎の支持力特性

| 九州大学大学院 | 学生会員 | 小川 | 健太郎 | フェロー会員 | 善  | 功企 |
|---------|------|----|-----|--------|----|----|
|         | 正会員  | 陳  | 光斉  | 正会員    | 笠間 | 清伸 |

### <u>1. はじめに</u>

サクション基礎とは中空円筒状の基礎を,基礎内外の圧力差(サクション)を利用して地盤中に沈めるもの である.サクション基礎は地盤中に直接根入れされるため,転倒・滑動に対して高い安定性を発揮することか ら,波力などの大きな水平力が作用する構造物への適用性が高いと考えられている.しかし,サクション基礎の 施工例は少なく,支持力特性に関しては,不明な点が多いのが現状である.

そこで本文では,偏心傾斜荷重に対するサクション基礎の支持力特性を解明することを目的とし,有限要素 法を用いた数値解析 (FEM 解析)を行った.

### <u>2. 解析概要</u>

本解析では,既往の研究<sup>1)</sup>で行った模型実験を参考に,図-1 に示す幅 100cm,深さ50cmの解析メッシュを用いた.周辺地盤は単一の砂地盤と し,Mohr-Coulomb の弾塑性体モデルとした.基礎は,直江津港の実証実 験で用いられたプロトタイプの 1/200 モデルであり,開口率(r<sub>in</sub>/r<sub>out</sub>)<sup>2</sup>=0 の中実基礎と,開口率 0.83 のサクション基礎で,各々の根入れ幅比 (D/B)=0.37,1.1 である合計4体を用いた.砂地盤および,基礎の材料定数 については,模型実験を参考に以下のように決定した.

-砂地盤- ヤング率:  $E_s = 1500 gf / cm^2$ , ポアソン比:  $v_s = 0.25$ 

単位体積重量:  $\gamma_s = 1.60 gf / cm^3$ , せん断抵抗角:  $\phi' = 41^\circ$ , 粘着力: c' = 0-基礎-  $E_f = 2.86 \times 10^7 gf / cm^2$ ,  $v_f = 0.20$ ,  $\gamma_f = 2.14 gf / cm^3$ 

また,滑り現象を再現するため,基礎と砂地盤との間にジョイント 要素を入れている.

荷重は,基礎偏心位置(正規化偏心量 e/B=0, 0.08, 0.24, 0.42)に,集中 荷重を段階載荷(19.6N×20)で与えた.荷重の傾きの影響を調べるため, 傾斜角θ=0, 15, 30, 45°の各ケースについて解析を行った.

### 3. 結果および考察

#### 3-1. 解析値と実験値の比較

図-2 は鉛直載荷(傾斜角0°)における中実基礎とサクション基礎 の極限支持力の解析値と実験値を比較したグラフである.ここで,根入 れ幅比は0.37 および1.1,正規化偏心量0,0.08,0.42 である.図-2より,正 規化偏心量 0.42 のケースにおいて,解析値が実験値に比べて多少小さ な値となるものの,全体としては,解析値と実験値はほぼ一致している. このことから,本解析が模型実験を比較的精度良く再現できていると 考えられる.

図-3 は縦軸に極限支持力 Q<sub>u</sub>(N),横軸にモーメント荷重を基礎幅で除 した値 M/B=Qe/B(N)をとったグラフ(開口率 0.83 のケース)である. 図-3 より,根入れ幅比によらず全体的な傾向として,傾斜角が 0°では, 極限支持力は偏心量の増加とともに減少している. 傾斜角 15°では, 正規化偏心量 0.08 もしくは 0.24 で極限支持力が最大となる.傾斜角



図-1 解析メッシュ図



図-2 解析値と実験値の比較



図-3 極限支持力

30,45°では、偏心量の増加とともに、極限支持力が増加する。このこと は、傾斜角が大きくなるにつれて、荷重の作用点を水平力作用方向と逆 方向に偏心させることにより、大きな支持力が発揮されることを意味 する.また、基礎の根入れに着目すると、いずれのケースにおいても、根 入れ幅比1.1のケースの方が大きな極限支持力を発揮しており、基礎の 根入れ効果が確認できる.

#### 3-3. 開口率の影響

縦軸に中実基礎に対するサクション基礎の極限支持力の割合,横軸 に正規化偏心量をとったグラフを図-4(根入れ幅比 1.1),図-5(根入 れ幅比 0.37)に示した.図-4 より,中実基礎に対するサクション基礎の 極限支持力の割合は,0.80から 0.95までの値をとる.つまり,根入れ幅比 1.1 では,中実基礎の方が大きな極限支持力を発揮する.一方,根入れ幅 比 0.37の図-5の場合,傾斜角 30,45°では,正規化偏心量によらず,極限 支持力の割合は1以上の値となっている.傾斜角 0,15°のケースでは, 正規化偏心量 0,0.08,0.24で極限支持力の割合が1未満となり,正規化 偏心量 0.42で1以上となっている.

これらのことから、基礎の根入れが小さい場合、荷重の傾斜が大きい ケース、もしくは、荷重の傾斜は小さいが、偏心量が大きいケースでは、 中実基礎よりサクション基礎の方が大きな支持力を発揮すると言える。 これは、根入れが小さい場合、荷重の傾斜・偏心により、基礎が滑動し、中 実基礎は基礎側面の受働土圧と基礎底面の摩擦で抵抗しているのに対 し、サクション基礎は基礎側面の受働土圧と基礎底面のせん断力で抵 抗するため、中実基礎より大きな支持力を発揮すると考えられる。

### 3-4. 変形図・破壊領域図による考察

図-6は,開口率0.83,根入れ幅比0.37,正規化偏心量0.24,傾斜角45°に おける,地盤および基礎の変形図である.図-6より,基礎は載荷により,転 倒することなく,ほぼ水平方向に滑動している.

図-7,は根入れ幅比 0.37,正規化偏心量 0.24,傾斜角 45°,開口率 0,0.83 における破壊領域図である.図-7 より,中実基礎では基礎底面下に大き な破壊領域が生じているのに対し,サクション基礎では,大きな破壊領 域は生じていない.このことからも,根入れが小さい場合では,中実基礎 よりサクション基礎の方が大きな支持力を発揮することが分かる.

# <u>4. 結論</u>

- 傾斜角が大きくなるにつれて,荷重の作用点を水平力作用方向と 逆方向に偏心させることにより,大きな支持力が発揮される.
- 基礎の根入れが小さい場合,荷重の傾斜が大きいケース,もしくは、 荷重の傾斜は小さいが,偏心量が大きいケースでは,中実基礎より サクション基礎の方が大きな支持力を発揮する.
- 上記のように、サクション基礎の方が中実基礎よりも支持力が大きい現象は、基礎底面の摩擦力とせん断力の違いによる.

【参考文献】小川健太郎・善功企・陳光斉・笠間清伸:アルミ棒積層地盤を用い たサクション基礎の偏心載荷実験,土木学会西部支部研究発表会講演概要集,ppA-248-249,2004



図-5 開口率の影響(D/B=0.37)



図-6 変形図



(a)  $(r_{in}/r_{out})^2=0$ 

