剛棒とバネー体型非弾性要素を用いた2次元骨組構造解析

佐賀大学大学院 学生会員〇岩崎明仁 佐賀大学 正会員 井嶋克志 佐賀大学 正会員 帯屋洋之 (株) フォーラムエイト 正会員 井口真一

1. まえがき

RC 橋脚や鋼製橋脚の耐震安全性照査を目的とし て地震応答計算ソフトが使用されている.しかし, ソフト間で使用する非弾性計算モデルが異なるため, 解析結果に比較的顕著な差異を生じているのが現状 である.この差異は橋脚曲げ降伏前の弾性時計算に ついても顕著に現れ,寧ろこの弾性時の誤差が最終 的に重要となる橋脚降伏後の結果に影響しているよ うに見受けられる.

本論文は、剛体部とバネ部から全体構造をモデル 化する所謂剛体・バネモデルを用いるのではなく、 要素端および内部にバネを設置した剛棒・バネー体 型要素により弾性時から降伏後まで高精度計算が可 能となることを示したものである.特に、要素内部 4点にバネを配置した場合、一貫したアルゴリズム のもとに弾性時であれば弾性梁と等価な挙動を行う とともに、降伏後も降伏箇所の曲率あるいはひずみ 挙動が全体構造分割による要素長に影響されない解 析が可能となる.

2. 非弾性要素モデル

図-1に示すように、1要素内部4点に回転バネを 配置した非弾性要素を用いることとする.各回転バ ネは要素内の或る区間を曲率一定と仮定して成立す るバネ定数を持つものであり、この4個のバネの弾 性時ひずみエネルギーが弾性梁のひずみエネルギー と等価となるように、曲率一定区間長および内部バ ネ位置を定める.

要素両端のバネは道路橋示方書耐震設計編の RC 橋脚について示されているような塑性ヒンジ長 ηl を曲率一定区間とすれば,要素両端のバネ定数は次 式となる.

$$kl = kr = \frac{EI}{\eta l} \tag{1}$$

ここに, *l*は要素無応力長、*EI*は曲げ剛性である.

内部バネの位置を要素左右端から λl とし、そのバネ定数を k_c とする.要素両端の端モーメントによる 要素全体のひずみエネルギーと弾性梁のひずみエネ ルギーを等価にする条件より、内部バネ位置 λ およ びそのバネ定数 k_c が定まり、次のようになる.

$$\lambda = \frac{1}{2} \pm \frac{1}{2} \sqrt{\frac{1 - 6\eta}{3(1 - 2\eta)}} = \frac{1}{2} (1 \pm \xi)$$
(2)

$$kc = \frac{2EI}{(1-2\eta)l} \tag{3}$$

式(1)~(3)を用いて,要素端モーメントと端たわ み角の関係は次式となる.

$$\begin{cases} \Delta M_{i} \\ \Delta M_{j} \end{cases} = \frac{k_{c}}{2k_{c}^{2} + (1+\beta)(k_{l}+k_{r})k_{c}+2\beta k_{l}k_{r}} \\ \times \begin{bmatrix} k_{l}\{2k_{c}+(1+\beta)k_{r}\} & (1-\beta)k_{l}k_{r} \\ (1-\beta)k_{l}k_{r} & k_{r}\{2k_{c}+(1+\beta)k_{l}\} \end{bmatrix} \begin{bmatrix} \Delta \theta_{i} \\ \Delta \theta_{j} \end{bmatrix} (4) \\ \Box \Box \Box , \beta \sqcup \mathcal{K} \mathcal{O} \oplus \mathcal{O} \oplus \mathcal{S} . \end{cases}$$

$$\beta = \frac{1 - 6\eta}{3(1 - 2\eta)} \tag{5}$$

本要素の弾性時ひずみエネルギーは弾性梁のそれ と一致し、これにより弾性時の荷重-たわみ関係など 完全に弾性梁の要素端力式を用いた解析結果と一致 する.さらに、要素一端が降伏した場合においても、 もし、使用する非弾性特性が完全弾塑性であるなら ば、塑性箇所をヒンジ点とする解析結果とも本要素 モデルによる解析は一致する.また、1要素曲率一 定とする有限要素法的ファイバー要素による解析や 降伏箇所限定とする集中非弾性バネ解析などでは、 要素長あるいは集中バネ対象部材長が降伏後の曲率 あるいはひずみ挙動に大きく影響するが、本要素モ デルでは式(3)の内部バネ位置の操作のみによって 分割要素長に依存することなく定められた塑性ヒン ジ長に基づく非弾性挙動を忠実に表すことができる.

図-2 数値計算例に使用した構造系

3. 計算例と考察

図-2 に示す両端固定梁について, 微小変位理論に より塑性ヒンジ発生による崩壊過程の計算を行う. 点A, B, Cの順に降伏するから, 曲げモーメント曲 率関係を完全弾塑性とすれば, 両端固定梁, 点Aピ ン支持系, 点Cのみ固定の片持ち梁の順に解けば, 厳密解を得る.

剛棒・4点バネ要素はAB間とBC間それぞれ1 要素として2要素による計算を行う.この剛棒・4 点バネ要素については,降伏後の計算比較のため $\eta l = 0.1m$, $\eta l = 0.25m$ の2つの異なる塑性ヒンジ長に ついて計算した.また,剛棒・4点バネ要素との比 較として,剛棒・2点バネ要素を1要素1mの全3要 素と1要素0.5mの全6要素の結果も示している.剛 棒・2点バネ要素は要素半区間を曲率一定とするモ デルであり,厳密的には異なるが,剛体・バネモデ ルとしてこれまでに用いられている解析モデルに対 応する.

初期曲げ剛性 $EI = 100kNm^2$ 、降伏曲げモーメン ト $M_y = 50kNm$ として、荷重と載荷点のたわみ y_B を計算すれば図-3となる. 図中、直線の傾きが変わ る箇所で、点A、Bの順に降伏が発生している. 厳密 解および塑性ヒンジ長が異なる2ケースの剛棒・4 点バネ要素の解は実線で、剛棒・2点バネ要素解は 点線で表される. それぞれ荷重 P = 150kNの時に点

C降伏に至る.また,新たな降伏箇所が発生時の荷 重とたわみそれぞれの数値を表-1に示している.図 表から分かるように塑性ヒンジ長を種々変えても剛 棒・4点バネ要素の荷重-たわみ関係は全て厳密解に 完全に一致する.

塑性ヒンジ長の影響は降伏後の曲率に現れ,表-2 に新たな降伏箇所発生時の点A及び点Bの曲率を示 している.同一荷重に対して塑性ヒンジ長が変わっ ても同一のひずみエネルギーとなるから,塑性ヒン ジ長が短いほど降伏後曲率は大きくなり,表-2はこ のことを明瞭に表している.剛棒・2点バネ要素は 分割を細かにすれば厳密解に近づくものの,弾性時 精度の悪さに起因して変位は厳密解より大きく,弾 性時の誤差がそのまま降伏後の誤差に積み残されて いることが分かる.また,塑性ヒンジ長が異なれば 降伏後の曲率やひずみ挙動が異なるから,単純に要 素分割を細かにすることはできず,結局,剛棒・2 点バネ要素は必然として誤差を含む解析となる.

なお,剛棒・4 点バネ要素の内部バネ位置につい ては要素端部の塑性ヒンジ長次第で複素平面上に存 在することになるが,詳しくは講演時に発表する.

	嵌密砌	4 点バネ		2 点バネ		送应留	4 点バネ		2 点バネ	
		$\eta l = 0.1 \mathrm{m}$	$\eta l = 0.25 m$	3要素	6要素	取 名 件	$\eta l = 0.1 \mathrm{m}$	$\eta l = 0.25 m$	3要素	6要素
点A降伏時	225/2	112.50000	112.50000	117.86000	114.00000	1/9	0.1111111	0.1111111	0.2500000	0.1450000
点B降伏時	2025/14	144.64286	144.64286	145.00000	144.73684	4/21	0.1904762	0.1904762	0.3500000	0.2302632
点C降伏時	150	150.00000	150.00000	150.00000	150.00000	1/3	0.3333333	0.3333333	0.5000000	0.3750000

表-1 降伏時の荷重とたわみ

表-2 降伏時の曲率

			点Aの曲率[1/m]	点Bの曲率[1/m]				
		$\eta l = 0.1 \mathrm{m}$	$\eta l = 0.25 m$	2点バネ(6要素)	$\eta l = 0.1 \mathrm{m}$	$\eta l = 0.25 \mathrm{m}$	2点バネ(6要素)		
	点A降伏時	-0.5000000	-0.5000000	-0.5000000	0.33333333	0.3333333	0.3400000		
	点B降伏時	-1.5714286	-0.9285714	-0.9210526	0.5000000	0.5000000	0.5000000		
	点C降伏時	-3.000000	-1.5000000	-1.5000000	1.7500000	1.0000000	1.000000		