小林憲治 太刀掛正俊

青野雄太

日野伸一

九州大学学生会員

正会員

九州大学

## 1.はじめに

FRP(繊維強化プラスチック)は、その軽量性や耐食性等か ら、自重の軽減、施工性の向上やメンテナンスコストの軽減 等の利点があり、新たな土木構造材料として期待されている. GFRP 引抜き成形法(図-1)は、大型断面形状での大量生産が 可能であり、製造コストが抑えられる大きな利点がある.し かし、FRP は異方性材料であり、強化材である繊維が樹脂マ トリックスにより積層されて成形されているため、設計のための 取扱いが極めて煩雑である.本研究では、設計面での簡便な取扱 いのため、解析上、鋼材やコンクリート材料と同様の厚さ方向に 均一な異方性材料としての取扱いの可能性について究明すること を目的とし、GFRP 引抜き成形 I 型断面はりの曲げ試験を実施と、 汎用解析ソフトを用いて解析を行った.

#### 2.試験および解析の概要

#### 21 曲げ試験概要

本試験は,スパン 4000mm,高さ 600mmのGFRP はり部 材に対し対称2点漸増載荷を行った(写真-1,図-2).載荷点に は幅100(mm)厚さ25(mm)の鋼製プレートを敷き,荷重が均 ーに分布するようにした.Case A は座屈挙動を計測するため, 垂直補剛材(GFRP製,箱形断面100×100×564mm,厚さ 5mm)を支点部のみに2本ずつ,CaseB は座屈耐力を向上さ せるため,支点部に加え載荷点位置に1本ずつ,それぞれエ ポキシ樹脂により接着した.

#### 2.2 解析概要

本解析は, 1/2 対象モデルで計算し, GFRP はり部材と GFRP 垂直補剛材は直交異方性 4 節点シェル要素を用いてモ デル化した.解析には,汎用解析ソフト Lusas version13.7 を使用した.フランジ・ウェブともに,厚さ方向には均一な ものと仮定し,それぞれに材料試験で得られた材料定数を使 用した.(**表-1**)

表-2 に本試験供試体の寸法測定の主要な結果を示す .本解 析では,誤差の大きいフランジの直角度を初期不整として FEM モデルに反映させることとし,FEM モデルの上フラン ジを 0.76°傾けることによって初期不整の再現を試みた.な お,スパン方向および直角方向については不整を無視した.



表-1 解析に用いた材料定数

| 項目      | 単位  | 部位    | 引抜き方向(X)  | 引抜き直角方向(Y) |
|---------|-----|-------|-----------|------------|
|         |     | フランジ  | 38.8      | 10.1       |
| 引張弾性係数  | GPa | ウェブ   | 23.5      | 15.9       |
|         |     | 垂直補剛材 | 30        | 10.1       |
| 引張強度    | MPa | フランジ  | 359.69    | 134        |
|         |     | ウェブ   | 334.77    | 143.01     |
|         |     | 垂直補剛材 | 300       | 134        |
| 圧縮弾性係数  | GPa | フランジ  | 41        | 10.1       |
|         |     | ウェブ   | 25.01     | 16.38      |
|         |     | 垂直補剛材 | 30        | 10.1       |
| 圧縮強度    | MPa | フランジ  | 235.4     | 98.6       |
|         |     | ウェブ   | 283.4     | 139.6      |
|         |     | 垂直補剛材 | 300       | 134        |
|         |     | フランジ  | フランジ 5200 | 5200       |
| せん断弾性係数 | Gpa | ウェブ   | 5110      |            |
|         |     | 垂直補剛材 | 3677      |            |
| ポアソン比   |     | フランジ  | 0.27      |            |
|         |     | ウェブ   | 0.24      |            |
|         |     | 垂古湖剛材 |           | 03         |

表-2 部材寸法測定結果

| 測定項目     | 設計値  | 許容範囲  | 測定値  |
|----------|------|-------|------|
| 部材長      | 4600 | ± 3   | 4601 |
| フランジ幅    | 300  | ± 2   | 299  |
| 部材高      | 600  | ± 3   | 600  |
| 板の平面度    | 0    | 2.8以下 | 0    |
| フランジの直角度 | 0    | 2.0以下 | 1.8  |
| 部材の反り    | 0    | 4.6以下 | 0.5  |

単位:mm

### 3. 結果および考察

CaseAは写真-2に示すように載荷点位置におい て局部座屈が先行し Pmax=352kN で上フランジ とウェブの間に引抜き方向に割れを生じて破壊し た.上フランジとウェブの結合部に圧縮応力が集 中し,表裏ともにひび割れが発生しているため, 内部のロービング,クロス層についても,破壊し ていると考えられる.CaseBは写真-3に示すよう にPmax=534kNで支点部の垂直補剛材が剥離し, 急激に座屈が発生して,GFRP 桁端部の上下フラ ンジおよびウェブが層間剥離して破壊した. CaseBの破壊耐力は,CaseAに比べ 52%増加した.

図-5より,スパン中央部の荷重-たわみ関係では, 試験結果と FEM 解析結果の剛性はほぼ一致し ていることがわかる.図-6 にスパン中央断面の 引抜き方向ひずみ分布図(CaseA)を示す. P=177kNまでは平面を保ちながらひずみが進行 していくが,局部座屈が発生し破壊した Pmax=352kNでは,大きく変化していることが わかる.図-7にCaseAの面外変形コンター図を 示す.載荷点位置からスパン中央部にかけて,上 フランジとウェブの結合部付近で面外変位が大 きくなり,ウェブ全体が大きく孕む傾向がわかる. 細部については,講演会にて発表する.

### 謝辞

本研究の一部は,平成 16,17 年度科研費 基盤研究(C)(代表:日野伸一)の補助を受 けている.ここに記して感謝の意を表する.

# 参考文献

1) Hino,S.,Abdullah,B.,Djamaluddin,L., Yamaguchi,K., Kawai,K., Hayashi,K.: Behavior of GFRP Pultruded I-600 Beam Under Static and Fatigue Loadings, Journal of Structural Engineering, JSCE, Vol.51A, pp1267-1274, 2005 2) 土木学会:FRP 橋梁-技術とその展望-,構造工 学シリーズ 14, 2004



写真-2 Case A 破壊状況









