RC 中空ホロー桁の炭素繊維シート接着補強効果

九州工業大学工学部 学生会員 池田 憲司 九州工業大学 正会員 幸左 賢二 新構造技術(株)大阪支店 設計部 正会員 粟根 聡 九州工業大学 非会員 宇野 裕教

1. まえがき

本研究は,緊張力を導入した炭素繊維 シート接着工法の設計手法を確立するた め,RC中空梁の実構造物をモデル化した 供試体について,初期載荷により損傷を 与えた後に炭素繊維シートで下面補強し, 端部を鋼板で固定した載荷試験により, 緊張力を導入しない場合の炭素繊維シー

トの挙動と供試体のひび割れの破壊性状について 検討を行った.

2. 実験内容

図-1に本実験で用いた供試体形状を示す.本 実験の供試体は、対象橋梁のひび割れ損傷状況に 近い状態を再現するために、実橋の中央部の断面 を対象に、圧縮および引張鉄筋比をそれぞれ一致 させ、ボイド1本分の断面をモデル化した供試体 を用いている¹⁾.

また,L-2(接着補強)は,初期載下終了後,幅 300mmの炭 素繊維シートを下面に二枚並べて接着補強した.

本実験では、L-1(無補強)は、載荷は油圧式ジャッキにより 行い、等曲げ区間内のひび割れ挙動に注目するため載荷点間隔 1500mの2点載荷とした.一方、L-2は初期載荷により主鉄筋 初降伏荷重まで繰り返し載荷を行い、残留ひび割れ幅が約 0.2mm発生した時点でひび割れ注入は行わずに炭素繊維シート を接着し載荷を行った.

3. 実験結果

3.1 最終破壊状況

図-2に, L-1, L-2の最終破壊状況を, また, 図-3 に, 荷重と変位の関係を示す. L-1 は主鉄筋の降伏後

(610kN) 勾配が徐々に低下し,783kN で上段主鉄筋が 等曲げ区間全体で降伏後,荷重が一定の状態で変位が進 展し,変位87mmでコンクリートの上部曲げ圧縮破壊で 終局に至っている.

図-4に、シートの剥離状況を示す.また、写真-1 に、シート剥離の状況を示す.補強した炭素繊維シート は FRP 材として用いたために供試体に接着した直後か ら、小さな空隙が数カ所で確認された.荷重を載荷して

から徐々にそれらの空隙部分の剥離が進展し拡大した.その後, 1050kNで左側せん断スパン間の中央から支点端部に向かって一 気に剥離が進展し,1070kNに達すると右側でも剥離進展が確認さ れ,最終的には左右せん断スパン間で大部分のシートが剥離した. これは,両端のシートが剥離したのち最大荷重を示していること から,左右のせん断スパン間のシート剥離が供試体の耐力に大き く依存していると考えられる.

3.2 ひび割れの進展状況

各供試体の等曲げ区間のひび割れの発生本数を示したものを図 -5に示す.ひび割れは400kN程度までは増加傾向にあるが,10 本前後のひび割れが発生した時点で,それ以降新たなひび割れが 発生していないから,定常状態に至ったと判断できる.定常状態 のひび割れ本数は,土木学会式とL-2を比較するとほぼ同数とな った.補強後のL-2は,初期載荷の最大荷重までは新たなひび割 れは発生することはなかったが,2段目主鉄筋の降伏後に新たに ひび割れが発生し,ひび割れの分散効果が確認できた.

ひび割れ幅の変化を図-6に示す. 等曲げ区間で発生したひて 割れ幅を補強前,補強後について解析値と比較した. 解析 値は FEM 解析により,下縁コンクリート要素の最大主ひ ずみの平均値と各ひび割れ間の距離をかけ合わせたもので ある. 初期載荷では,ひび割れ幅は 0.55mm まで開き,除 荷後は 0.2mm であった.しかし,補強後は 0.35mm 程度に なった.以上のことから,ひび割れ幅は,補強前と補強後 で7割程度に低減することが確認できた.炭素繊維シート に生じる引張応力が,ひび割れ幅を拘束していると考えら れる. 解析値は,実験値をよく再現しているが,補強後の ひび割れ幅が,実験値の補強後に比べ 1.42 倍と大きい.こ の原因として,コンクリートとシート間の付着性状が一要 因と考えられる.

4. まとめ

- (1)供試体の耐力比は、(補強/無補強) で 1.25 となった. しかし、せん断スパン間の炭素繊維シートの剥離後、供 試体が破壊したことから、端部の接着が供試体の耐力に 影響する.
- (2)炭素繊維シートで補強した供試体は、等曲げ区間においてひび割れの分散効果が見られ、無補強の約2倍のひび割れ本数を確認できた。

			-1-	NTADI		176762	(2000
\.		載	荷位置	C C	.L.	載荷位	置
~		0	Ø		9	0	0
、 忍さ	0	Ø			4	8	0
<i>t</i> -	(a)	900kN 変位20)mm				
- J			0	10	OF	©	0 0
ーこ	0	Ő	8	<u></u>			
	(b)		l0mm		n M		
			0	1 0		S C	00 8
			d d	<u>,</u>		and the second	
10	(c)	 1050kN 変位5	55mm	を側ピー!	 ング発生	<i>ANXII</i> E	e i o
しが			0			©	00
犬態		III AND	<i>d</i>	<u>,</u>			
こな	(d)		57mm	Martin	a M	<u> </u>	۵ ُ
膨			0	1 0		\$	
ミに				<u> </u>			
						MART	<u> </u>
	1200 1000			{	,		· · · · ·
\sim	000	定	常状態		.0		
重 (kN	000					5	≧散効果
荷荷	600	-				V I 1	
博	400		\times			• L-1	
	200	***	i			O L-2 - - 土才	補強後 — K学会式
	0	0 5	;	10	15		
			等曲(ず区間(1500	mm)ひび	割れ本数	
		<u> </u>	-5	5 ひび割	割れ本数	数の挙	動
0.6	50 50			■宝睦店		庙	
E 0.3	,0 10						
れ 0.3 幅	30	_					1
扉 う 0.2	20						
ති 0.1	0	_					
0.0	0	771kN		Oki	N		4kN
	:	初期載荷最大	、荷重	除荷時(死	浅留 幅)	補強	後載荷
	义	-6 シ-	- トネ	歯強によ	る7 ,7,7,5	割れ.幅	の変化

- (3) 等曲げ区間のひび割れ幅を補強前の7割程度に抑える結果が得られた.一方,解析値は補修前と後で変わらない結果となった.
- 5. 参考文献 1)幸左賢二,池田憲司,藤井康彦,栗根 聡:緊張した炭素繊維シートによる RC 中空床版橋の補強効果に関する検討, プレストレスとコンクリートの発展に関するシンポジウム, pp. 467-472, 2004. 10.