一般廃棄物溶融スラグの流動化処理土への適用

熊本大学工学部 学生会員 〇田口 智則 熊本大学工学部 正会員 林 泰弘 熊本大学工学部 正会員 鈴木 敦巳 熊本大学工学部 正会員 北園 芳人

1. はじめに

一般廃棄物の最終処分場の問題は年々深刻になっており、その対策として廃棄物の溶融・固化による減容化・無害化技術の開発が盛んである。この一般廃棄物を溶融・固化したものが一般廃棄物溶融スラグであり、元容積の 1/40~1/60 になり重金属の溶出防止にも効果がある¹)。この溶融スラグの粒度は砂分が卓越しており、コンクリート細骨材への利用や路盤への利用などの実用例もある。しかし、生成される溶融スラグの使用率は約 50%に留まっており、さらなる活用技術を検討する必要がある。本研究では、一般廃棄物溶融スラグの基本的性状を明かにするとともに、流動化処理工法の主材への適用を検討する。

2. 流動化処理土と品質基準

流動化処理工法は、転圧や締固めの困難な場所でよく用いられる工法である。流動化処理土は、現地発生土などの主材に、泥水と固化材(セメントなど)を混合し、固化後の強度を期待するもので、処理土密度、施工性を示すフロー値、均質性を示すブリージング率、一軸圧縮強度で評価される。品質基準は建設省総合技術開発プロジェクトで表1のように示されている。

3. 一般廃棄物溶融スラグの基本的性状

スラグは生成方法によって水砕・空冷・結晶スラグに分けられ、水砕→空冷→結晶の順に結晶化が進み土質材料として強度・安定性の面で好ましいが、現在我が国で生成されている溶融スラグは水砕がほとんどである。本研究で用いた溶融スラグは、九州内の溶融・固化施設3箇所から採取したもの(A,B,C)で、すべて水砕スラグである。基本的な性状は、表2の通りで砂分が多く、粒度は不良で、明確な最大乾燥密度は得られなかった(図1)。また、締固め後に粒度試験を行なったところ、Bは粒子破砕が見られた。溶融スラグに含まれる重金属類の溶出試験と含有試験(環境庁告示第46号、19号)の結果は、いずれも土壌環境基準を満たしていた。

4. 試験方法

主材に一般廃棄物溶融スラグ (B)、泥水用粘土としてカオリン、固化材に高炉セメント B 種を用いた。次に示す2つの条件(試験1、2)で処理土を作製し、フロー試験、ブリージング試験、一軸圧縮試験(7日養生)を表3にしたがって行なった。試験1では、単

表1 流動化処理土の品質基準概要

項目	基準			
フロー 値	160mm 以上			
ブリ-ジング 率	1% 未 満			
一 軸 圧 縮 強 さ	7日後 196.2 k Pa以上			
最 大 粒 径	40mm 以下			
処理土の密度	1.50t/m³以上			

表2 一般廃棄物溶融スラグの基本的な性状

N				
採取した場所		Α	В	С
含水比(%)		6.7	10.0	4.1
土粒子密度(g/cm³)		2.777	2.774	2.834
最大粒径(mm)		19	19	19
粒 度	礫 分(%)	7.6	29.8	25.1
	砂 分(%)	90.7	68.7	73.3
	細粒分(%)	1.7	1.5	1.6
	均等係数	3.1	3.6	3.5
	曲率係数	1.0	1.2	1.3

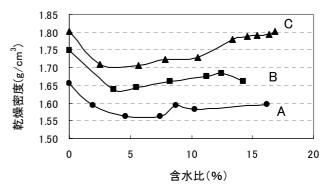


図1 締固め曲線

表3 試験方法

試験	試 験 方 法				
フロー試験	日本道路公団規格 JHS A 313-1992				
ブリージング試験	土木学会基準 JSCE-1986				
一軸圧縮試験	土質工学会基準 JSF T511-1990				

位体積当りの固化材を一定($150 kg/m^3$)にし、含水比を調整してフロー値を $170 \pm 5 mm$ になるようにした。 試験 2 では泥水密度を一定とし、泥水に加えるスラグの添加率を変化させた。このため、スラグの添加率の増 加にしたがって、単位体積当りの固化材量は減少す る。試験 1.2 で、それぞれ用いたスラグ添加率 0%の 流動化処理土の配合は同一である。また、(カオリン / (カオリン+スラグ)) ×100 (%) をスラグの添 加率と称した。

5. 結果と考察

5-1 配合特性

フロー値は、試験1のすべての配合と、試験2の スラグの添加率 80%を除く配合で、フロー値の品質 基準を満たしていた。また、試験1の条件(固化材 一定)では、スラグの添加率が高い程、低い含水比 で所定のフロー値が得られることがわかった(図2)。 ブリージング率については、試験 1.2 のすべての配 合で、ブリージング率の品質基準を満たしていた。

5-2 一軸圧縮強さ

試験1,2ともに、スラグの添加率の増加にしたがっ て、一軸圧縮強さが増加している(図3)。試験1に ついては、乾燥密度と固化材/泥水の増加のためであ ると考えられる。試験2では、単位体積当りの固化材 の量が減少しても一軸圧縮強さが増加している(図 4)。主材として天然骨材(粗粒分)を用いた場合、 一軸圧縮強さへの粗粒分の寄与率はきわめて低いと の報告がある2)が、それとは違う結果になった。

試験1ではスラグの添加率が40%以上で、試験2で は80%のみ、一軸圧縮強さの品質基準を満たしていた。

6. まとめ

同程度のフロー値を目指した時、一般廃棄物溶融ス ラグを添加すると、低含水比で所定のフロー値がでや すい。その結果、乾燥密度が増加し一軸圧縮強さも増 加することがわかった。また、固化材が少なくてもス ラグを添加することにより、乾燥密度が増加し一軸圧 縮強度を大きくすることができることもわかった。以 上より、スラグを流動化処理土に適用することは、有 効であるとわかった。

なお、本研究は(財)国土技術研究センターの平成 15年度研究開発助成を受けて実施したものである。

【参考文献】

- 1) スラグの有効利用マニュアル:財団法人 廃棄物研究財 団,1999年
- 2) 久野悟郎ら:固化した流動化処理の力学的特性と品質基準 に関する考察、土木学会論文集 No.750/Ⅲ 65.99 113.2003.12

表4 配合と結果(試験1)

スラグの添加率(%)	0	20	40	60	70	80	90
湿潤密度(g/cm³)	1.342	1.390	1.483	1.610	1.699	1.802	1.905
乾燥密度(g/cm³)	0.583	0.694	0.836	1.032	1.149	1.323	1.500
固化材/泥 水	0.125	0.127	0.136	0.153	0.169	0.194	0.240
固化材(kg/m³)	150	150	150	150	150	150	150
含水比(%)	130.1	100.3	77.3	56	47.9	36.2	27
フロー値(mm)	175	175	175	170	170	170	175
ブリージング率(%)	0	0	0	0	0	0	0.8
一軸圧縮強さ(kPa)	89.7	137.4	204.8	280.7	355.3	398.7	429.5

表5 配合と結果(試験2)

スラグの添加率(%)	0	20	40	60	70	80
湿潤密度(g/cm³)	1.342	1.384	1.475	1.584	1.694	1.834
乾燥密度(g/cm³)	0.583	0.656	0.800	0.974	1.153	1.371
固化材/泥 水	0.125	0.125	0.125	0.125	0.125	0.125
固化材(kg/m³)	150	143	135	122	111	94
含水比(%)	130.1	111.1	84.3	62.7	46.9	33.8
フロー値(mm)	175	195	210	180	183	125
ブリ-ジング率(%)	0	0	0	0	0	0
一軸圧縮強さ(kPa)	89.7	114.9	149.1	157.2	177.0	273.3

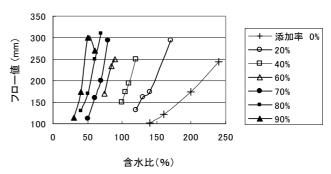


図2 試験1のスラグの添加率とフロー値

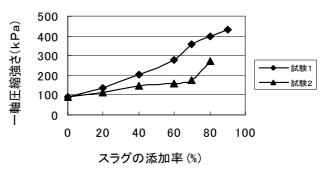


図3 スラグの添加率と一軸圧縮強さ

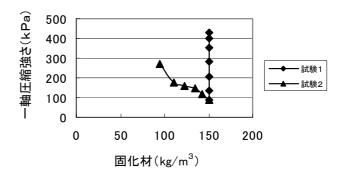


図4 固化材と一軸圧縮強さ