DRIM ブロックの耐波安定性に関する実験的研究

九州大学	学生会員	○高田	和幸	岩谷	理
九州大学	正会員	小野	信幸		
若築建設(株)	正会員	山口	洋		

1. はじめに

新海岸法では砂浜が防災施設として認められ,近年 では砂浜を主体とする質の高い海岸整備が求められて いる.その要素技術として,漂砂を任意方向に制御す る機能を持つ DRIM が提案されている.DRIM は多数 の研究結果からその有効性が確認されており,昨年よ り現地試験も開始された.しかし,耐波安定性につい ては岩谷ら(2004)による基礎的研究のみで,これまで 十分に把握されていない.そこで本研究では,岩谷ら (2004)の結果を踏まえ,縮尺と形状を変えたブロック を用いて,DRIM の耐波安定性について検討した.

2. 実験装置および実験方法

実験は図-1 に示す 2 次元造波水路において, 勾配の 違う斜面(勾配 1/10, 1/30)に固定床, スポンジ層の 2 種類の底面条件を作成し, それぞれ実験を行った. DRIM の形状諸元および設置状況を図-2 に示す. DRIM ブロックは, 標準型を①とし, 標準型に対する縮尺を 1/1.272 と小さくした②と高さの異なる③の3種類を用 いた. その断面形状を図-3 に, 諸元および設置個数を **表**-1 に示す. 入射波には規則波と不規則波を用いた. 規則波は周期 *T*=1.2s, 1.5s, 1.8s の 3 通りで波高 *H*を

表-1 DRIM 緒元と設置個数

DRIM緒元					設置個数			
	高さ	長さ	幅	重量	密度	縦	横	計
1	1.60	5.70	5.90	75.8	2.33	24個	4個	96個
2	1.28	4.44	4.60	35.6	2.37	24個	4個	96個
3	1 80	6 00	2 95	434	237	24個	6個	144個

6cm~16cm まで 1cm 刻みで変化させ、造波時間は 180 秒とした. 不規則波は, 有義周期 T1/3=1.2s, 1.5s, 1.8s の3通りで有義波高 H_{1/3}を 6cm~11cm まで変化させ, 造波時間を300秒とした. さらに, 各入射波条件に対 して DRIM 岸側端水深 d を 3.0cm~12.0cm まで 1.5cm 刻みで変化させた.安定性に関わる砕波形態は、勾配 1/30 では砕波帯相似パラメータ ξ_0 (= tan $\beta / \sqrt{H_0/L_0}$) が 0.112~0.306 で崩れ寄せ波砕破,勾配 1/10 では 0.335 ~0.918 でほぼ巻き波砕波である。②のブロックは、岩 谷ら(2004)の用いた波浪条件の相対的な上限を引き上 げるために用意したもので、これを用いる場合は、ス ケールを一致させるために各条件を 1/1.272 縮尺とし た. ③のブロックは底面厚を増して面積当たりの重量 を重くした上で幅を①の半分にしたもので、波長は① に合わせて製作した.実験中はブロックの状況を VTR 撮影し、ブロックの移動が見られる条件では繰り返し 実験を行ない、状態を判定した.

3.実験結果と考察

実験結果は N_s 値と被害率 D を用いて整理した. N_s 値は安定数と呼ばれ,被覆石などブロックの安定重量 を算定できる Brebner-Donnelly の式より算出される.

$$W = \omega_r H^3 / \left\{ N_s^3 \left(\omega_r / \omega_0 - 1 \right)^3 \right\}$$

Wはブロック重量, Hは入射波高, ω_0 , ω_r はそれぞれ 水, ブロックの単位体積重量である. 被害率 D(=飛散 ブロック数/全ブロック数×100%)は表-2のように定義 した.実験で揺動の大きかった T = 1.8s の状況を図-4 から図-7 に示す. 縦軸は N_s 値, 横軸は DRIM の岸側 端水深を入射波高で無次元化した d/Hで表示した. 図 中 h_b は砕波水深, h_p は砕波突っ込み点の水深である.

表-2 揺動状態の分類,判定

安定	全く動かない	D=0%
揺動	わずかに浮き上がるが元に戻る	D=0%
飛散	滑動や回転	D<20%
破壊	著しい飛散	D>20%

勾配 1/30 では,固定床,スポンジ層,3 種類の全 DRIM において揺動は発生せず,DRIM の高い安定性を再確 認する結果となった.実験中,砕波形態の大半は崩れ 寄せ波砕破で,波高を大きくしても砕波点が沖側に移 動し,砕波による乱れが底面に到達してブロックを不 安定にする現象は見られなかった.

図-4 は勾配 1/10, 固定床, 周期 1.8s(規則波)におい てブロック①を用いた結果,図-5はブロックを②に変 更した結果(T, d は縮尺後の値)である. ブロックが相 対的に小さいため、図-5にはより高い波高レベルの結 果がプロットされている. ①, ②とも砕波突っ込み点 周辺で不安定で, ②は砕波点に近い位置でも揺動が生 じている. 図-6 はブロックを③に変更した結果で, ② と同様に d /H が小さい領域(砕波点周辺~砕波帯)で安 定性が低い.これは、②や③が①に比べて絶対重量が 軽いことによる縮尺効果が原因の一つと考えられるが, ブロック①や岩谷ら(2004)にはあまり見られなかった 特徴である. 縮尺効果の影響も考えられるが, 戻り流 れや3次元斜行渦の影響,浅水変形による水粒子運動 方向の変化など様々な要因が考えられ、不安定要因に ついては今後さらに詳細な検討が必要であることを示 す結果である.

図-7と図-8は不規則波を用いて①と②のブロックに ついて検討した結果である.安定限界曲線はほぼ類似 の形状となり,実験の目的であるより大きな波高レベ ルにおける安定限界を見出すことができた.

4. まとめ

DRIM の耐波安定実験を行った. その結果, 岩谷ら (2004)と同様の結果を得た. また, 砕波突っ込み点の みならず, 砕波前後の流体運動が DRIM の安定性に大 きく関わることが確認された. 本研究における実験デ ータは, DRIM の耐波安定性の検討手法を構築するた めの重要なデータの蓄積となるものと思われる. DRIM の安定性には局所洗掘による端部ブロックの傾 きも関係すると考えられる. 今後は, 移動床において 端部の洗掘状況と安定性との関係を明らかにしていく.

参考文献

岩谷理他, DRIM ブロックの耐波安定性に関する研究,

図-8 勾配 1/10,固定床,DRIM②,不規則波,T=1.6s 平成 15 年度土木学会西部支部研究発表会講演概要集, 第 2 分冊,pp.B14-15,2004