直接基礎の非線形挙動を考慮した2径間吊橋の地震時挙動に関する検討

九州大学大学院工学府 学生会員 山内春絵 九州大学大学院工学研究院 フェロー 大塚久哲 住友重機械工業株式会社 正会員 吉田達矢

1. はじめに

直接基礎は、一般に良好な支持層に支持されることから、レベル2地震動に対する照査を行わなくてよいとされている。従って、基礎を固定としたり線形の地盤バネとしてモデル化し、評価する場合が多い。しかし、レベル2地震が作用した場合、直接基礎は浮上りおよび基礎地盤の降伏などによって非線形挙動を示すことも懸念される。浮上りに関しては、非線形挙動によるエネルギー吸収が期待できることから、耐震設計をより合理的に行うことができると共に、コスト縮減につながる可能性がある。本研究では、全長約2500mの2径間吊橋を対象に、主塔単体モデルと全体系モデルについて、基礎のモデル化が上部構造や基礎の挙動に与える影響について検討を行った。

2. 解析モデルおよび解析手法

(1)対象橋梁の概要

本研究で対象とした吊橋は,図-1に示す2径間2ヒンジ吊橋である。吊形式橋梁では路線計画上構造形式が非対称となることもあるため、この形状を採用した。中央径間1400m,側径間700mおよび400mで,短い方の側径間にはハンガーロープがない.補剛桁は鋼床版箱桁,主塔はRCラーメン構造とした。

(2)解析モデル及び解析条件の設定

図 -2 に解析モデルを示す . 主塔 , 補剛桁は梁要素で , ケーブルは曲げを受け持たないケーブル要素でモデル化を行った .アンカレイジは固定 ,補剛桁は橋軸方向に可動とした . ウィンドタングは橋軸直角方向について拘束 , タワーリンク部は上下方向について拘束しており ,他は可動とした .解析手法はNewmark 法(=0.25)による直接積分法を用いた . 積分時間間隔は0.01秒であり ,応答解析時間は30秒である . 地盤は 種地盤を想定しており ,減衰はRayleigh減衰(橋軸方向加震時2次と11次 , 橋直方向加震時1次と6次)を用いた .RC主塔の非線形復元力特性はトリリニア型武田モデルを採用し 幾何学非線形性も考慮して解析を行った 入力地震動は道路橋示方書に記載されている標準波 , Type111(最大加速度 318.839gal)および Type112(最大加速度 319.891gal)を用いた .

(3)解析ケース

図-3に解析モデルの主塔部分を示す .本研究においては基礎を3通りにモデル化し解析を行った 固定モデルは主塔基部を固定としたモデルであり ,SRモデルは基礎を深要素でモデル化し ,その端部に集約ばねをとりつけたモデルである .分布ばねモデルはSRモデルと同様に基礎を

(b)水平ばね

図-5 分布バネモデル骨格曲線

(a)鉛直ばね

モデル化し,基礎底面を20分割してばねを配置したモデルである.図-4にSRモデルの骨格曲線を示す.鉛直ばねは引張には抵抗しないモデルとし 圧縮に関してはバイリニアとした 水平ばねは線形ばねとし 回転ばねは浮上りを考慮したバイリニアでモデル化した.図-5に分布ばねモデルの骨格曲線を示す 鉛直ばねは引張に抵抗しないモデルとし,ジョイント要素を用いて水平ばねは鉛直ばねが引張領域時は抵抗しないものとした.

3. 解析結果

(1)単体モデルと全体系モデルの比較

表-1に最大浮上り量を示す.どのモデルにおいても浮上りが確認されるが,SRモデル,分布ばねモデルともに単体モデルと全体モデルで差が生じており.桁やケーブルの影響が伺える.また,図-6に基礎を分布ばねでモデル化した場合の主塔単体モデルと,全体系モデルの主塔の最大曲げモーメントの比較を示す.表-1との比較より,浮上りが大きいモデルほど主塔の曲げモーメントが小さくなっていることがわかる.

(2)全体系モデルの応答

図-7に橋軸方向加震時の主塔の応答を示す.最大水平変位に関しては 塔頂部ではどのモデルもほぼ同等であるが 基部では分布ばねモデルの応答が最も大きくなっており 浮上り時に水平ばねが抵抗しないモデル化の影響と考えられる 基礎が動くことにより主塔そのものはそれほど変位しておらず,曲げモーメントは最も小さくなっている.

図-8に橋直方向加震時の主塔の応答を示す .分布ばね モデルの水平変位が基部で若干大きくなっているが 塔頂 部へいくにつれて最も小さくなっており 主塔そのものは あまり変位していない .SRモデルは固定モデルと基部では差が生じるものの ほぼ同じ変位の分布である 従って ,曲げモーメントに関しても分布ばねモデルの値が最も小さく ,SRモデルは固定モデルとほぼ同等の応答である .

図-9に桁の最大応答変位を示す 橋軸方向加震時は 固定モデルに対し基礎をモデル化することで応答が小さくなっていることがわかる 特に主径間で分布ばねモデルの応答が最も小さい 橋直方向加震時は主径間 側径間ともにSRモデルの応答は固定モデルに比べ大きいが ,分布ばねは最も小さくなっており 主塔塔頂部の水平変位に追随した挙動を示している.

4. まとめ

基礎をモデル化することで、レベル2地震動に対して浮上りの発生が確認された。また、分布ばねモデルは浮上りによるエネルギー吸収により、主塔の変位や曲げモーメント 桁の変位に関して 固定モデルに比べ応答の減少が見られた.

参考文献

1)宮原健,吉川悟司,真辺保仁,宮本宏一,湧田充祐:御 所浦第2架橋の計画と設計,橋梁と基礎,Vol.39,No.1 2005.1

表-1 最大浮上り量

			// + I # ! = = # ! + \foots \foots		
SRモデルの浮上り量(cm)			分布ばねモデルの浮上り量(cm)		
	橋軸方向加震時	橋直方向加震時		橋軸方向加震時	橋直方向加震時
単体モデル	0.12	0.27	単体モデル	3.05	6.05
体系モデル	4.95	1.07	全体系モデル	7.29	4.44
25 (W) 11 (W) 1	→ 分布ばね → 分布ばね → 分布ばね → ひび割れ 下降伏モー	モデル(単体) モデル(全体) モデル(全体) オーメント メント	250 200 (a) 150 輕 禁士 100 50	→ 分布ばねま → 分布ばねま → ひび割れま — 降伏モーメ	モデル(単体) モデル(全体) ニ・メント ント
	/ \1 5 ±1 -1	- +=-+			—

(a)橋軸方向加震時

(b)橋直方向加震時

図-6 主塔の最大曲げモーメント

図-7 橋軸方向加震時の主塔の応答

図-8 橋直方向加震時の主塔の応答

図-9 桁の最大応答変位