PORE PRESSURE GENERATION OF SOFT SILTY CLAY SUBJECTED TO K-CONSOLIDATION IN CYCLIC TRIAXIAL TESTS

Saga University, S. MJSCE, L. SAMANG
Saga University, MJSCE, A. SAKAI
Saga University, MJSCE, N. MIURA

INTRODUCTION

A series of cyclic triaxial tests was conducted on undisturbed Ariake silty clay subjected to undrained cyclic loading. Testing was performed under various consolidation stress ratio $K = \sigma_{3a}'/\sigma_{1o}'$. Based on the experimental results, a method for evaluating the response of peak pore pressure generation is proposed. The evaluation is made by considering the variations of cyclic deviator stress ratio (q_{cv}/p_c') and parameter K.

TESTING PROCEDURE

The sample used in this investigation is undisturbed, Ariake silty clay, taken from the construction site of Saga Airport. Its index properties are ω_0 =87.5%, ω_1 =86.1%, I_a =47.9%, G_a =2.69.

To ensure a degree of saturation around 96%, all specimens were subjected to a back pressure of 2.0 kgf/cm² for 24 hours, with initial isotropic confining pressure of 0.13 kgf/cm². To reach the initial K-consolidation stress ratio, $K=\sigma_{3o}'/\sigma_{1o}'$, point A in Fig. 1, a vertical stress with an increment rate of 0.025 kgf/cm² per hour is applied. A consolidation was then performed under constant K-consolidation stress ratio K=1.00, 0.70, 0.56, and 0.50, by stress control with a vertical stress increment rate of 0.0135 kgf/cm² per hour.

A sinusoidal cyclic axial load was applied to a specimen under two-way stress-controlled conditions with a loading frequency of 0.1 Hz. After a certain number of loading cycle, reaching almost accumulated cyclic axial strain 10%, the load was interrupted. The conditions of cyclic triaxial tests are summarized in Table 1, only present a part of four series tests.

Fig. 1 Sketch for testing program and definition

Fig. 2 Relation of $S_p=(q_{cy}+q_s)/p_c'$ versus N_f for various $K=\sigma_{3o}'/\sigma_{1o}'$ at $\epsilon_p=10\%$

EVALUATION AND DISCUSSIONS

The cyclic strength ratio of test results to cause the accumulated peak axial strain ϵ_p =10% is shown in Fig. 2, expressing as

$$S_{p} = a * (N_{f})^{b} \tag{1}$$

Table 1. Conditions of cyclic triaxial tests

Test Number	K Values	c,	ω _c (%)	σ ₃₀ ' (Kgf/cm²)	q _{ey} /p _e '	N at ε _p =10%
K-1	1.00	2.506	96.1	0.755	0.517	43
K-2	0.70	2.446	88.7	0.625	0.520	. 37
K-3	0.70	2.301	82.9	0.625	0.382	2306
K-4	0.56	2.429	88.7	0.500	0.557	.10
K-5	0.50	2.402	88.3	0.450	0.507	36

 $\omega_{\rm e}$ and $e_{\rm e}$ are water content and void ratio prior to cyclic loading

where $S_p = (q_{cy} + q_s)/p_c$ is peak cyclic stress ratio. a is the value of S_p at N=1, it is correlated to consolidation stress ratio $\eta_K = q_s/p_c$ = 3(1-K)/(1+2K) by a=0.8(1+ η_K). b is an experimental parameter, also various with parameter η_K .

Referring to Fig. 1, a relative angle stress ratio R_{θ} is introduced as

$$R_{\theta} = \frac{\tan(\theta_{p} - \theta_{d})}{\tan(\theta_{f} - \theta_{d})} = \left(\frac{\eta_{f} - \eta_{d}}{\eta_{f} - \eta_{d}}\right) \left(\frac{1 + \eta_{f} * \eta_{d}}{1 + \eta_{p} * \eta_{d}}\right) \quad (2)$$

where θ_p and θ_d indicate the angles of stress ratio η_p and η_d to the axis p'. θ_f is an angle of cyclic stress ratio at failure η_p defined at ϵ_p =10%. The variation of η_f with stress ratio parameter K is shown in Fig. 3 by a linear relation η_f =2.2+0.8*K.

The relation between the normalized peak pore pressure (u_p/u_t) and parameter R_θ is shown in Fig. 4, expressing

$$R_{\bullet} = \alpha_{o} * \ln(1 + \alpha * N/N_{f})$$
 (3)

where α_o and α are experimental parameters. Using the conditions in Fig. 4, α_o is obtained as $\alpha_o=1/\ln(1+\alpha)$. Prediction curves are made for $\alpha=5$, 10, 15, and 25 to show a good agreement with the test curves.

The dependence of peak pore pressure generation on the number of loading cycle is subsequently obtained from the eqs. (2) and (3) as

$$u/u_{f} = \frac{\eta_{f}}{\eta_{p}} \left(\frac{1 + \eta_{p} * \eta_{d}}{1 + \eta_{f} * \eta_{d}} \right) \left(\frac{\ln(1 + \alpha N/N_{f})}{\ln(1 + \alpha)} \right)$$
 (4)

Fig. 3 Variation of cyclic stress ratio η_f with consolidation stress ratio K

Using equation (4), the test results shown in Fig. 4 is quite accurately to represent by using

parameters α =10. The curves are shown in Fig. 5.

Fig. 4 Relation of the normalized pore pressure (u_r/u_t) and the loading cycle (N/N_t)

Fig. 5 Predicted and observed responses of peak pore pressure u_p with loading cycle N.

CONCLUSIONS

The peak pore pressure generation subjected to various consolidation stress ratio K is normalized to have a unique non-linear relation with their loading cycle at failure N_t. An evaluation is made to show the applicability of the proposed relation, the results show good agreement with experimental curves.

REFERENCE

Samang, L. et al. (1994). Pore pressure generation and its post-dissipation in soft clay subjected to cyclic loading. Submitted for IS-HIROSHIMA '95