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Introduction

Knowledge on the wave-current interaction over uncven sea bottoms has always been of great interest for the
coastal engineers to design coastal structures and to predict their functional performance. Traditionally, the analysis
of the wave-current interaction has been based on the concept of radiation stress proposed by Longuet-Higgins and
Stewart (1961). Since both the effects of the current on wave and vice versa are significant, iteration is conceptually
necessary for accurate solutions with this theory. To avoid the iteration, which is time consuming in numerical
computations, we present a method for the description of the interacted waves and currents in this study. The model
is developed by integrating the continuity equation and the equation of motion in the vertical direction and, as an
application, is utilized to analyze the wave-current coexistent field over a submerged mound.

Development of Theory

Let us consider a two dimensional problem in the vertical plane. By the conventional assumption of invicid and
incompressible fluid, the motion induced by waves and currents can be described by the following continuity equation
and the equation of motion
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where u and w are the velocity components in the x and z direction, respectively, p the water density and p , the
dynamic pressure. The kinematic boundary conditions on the free surface and at the bottom can be expressed as
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where the subscripts fand b represent the values at the free surface and at the bottom, respectively; / is the still water
depth and 7’ the deviation of the free surface from the still water level.
Based on the exact solution of a linear wave over uniform current, we assume that the dynamic pressure p , can
be expressed by
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where £, is the modified wave number and g the gravitational acceleration.

By Eq. (5), Eqgs. (1) and (2) can be integrated from the bottom(z = —h) to the free surface(z = 7). When Eqgs.
(3) and (4) are also considered, we obtain *
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where Q = Ilu dz is the discharge in the x direction, C, the modified celerity, /i the momentum correction factor and
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x,and «, are the relative water depth dependent parameters;
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The modified dispersion relation can be obtained as
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where o is the angular frequency and U the current velocity.

Numerical Method

Eqgs.(6) and (7) have been discretized following the finite difference scheme proposed by Dronkers (1967), where
Q is defined at the integer grid points and fractional time steps and, on the other hand, 7’ is defined at the fractional
grid points and integer time steps. Central difference has been adopted for both the temporal and spatial
differentiations. The convective term in the equation of motion has been linearized and properly expressed by the
defined values of the unknowns. The discretized equations form a tridiogonal system which can be solved by the
double sweep method.

Results and Discussions

As an application of the mode! established, we consider the case where a wave propagates in a steady current.
The sea bed is essentially flat and horizontal but a mound is assumed to be in presence, so the water depth is non-
uniform in the domain concerned. The length of the mound is 150m and the maximum height 5m. The domain for our
computation is 450m long. The water depth over the flat bed is 10m. In the computations, we take Af = 0.5s and Ax
= 7.5m, which satisfy the CFL's stability condition. Forced currents of three different magnitudes (U=0.5, 0.75 and
1.0m/s) have been considered while the incident wave height (H,=0.62n1), wave length (L,=70.85n1) and wave period
(T =8s) are kept constant for all the cases. Figs. 1 and 2 show the variations of the mean water level 4 and the local
wave height H (both normalized by the incident wave height H) with the magnitude of the forced currents
(normalized by the incident wave celerity C,). It is found that on the flat bottom the variation of the mean water level
is almost the same in spite of the variable magnitude of the forced currents, because the incident wave conditions are
kept constant. Over the mound, however, larger drop of the mean water level is observed when the forced current is
strengthened. This can be explained by the principle of open channel hydraulics. It is also noted that the wave length
over the mound is significantly shortened when the magnitude of the forced current increases. This could be
interpreted by the larger decrease of the mean water depth over the mound for stronger forced current.
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Fig.1 Mean water level for various currents Fig.2 Wave height for various currents
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