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Introduction

The Ariake sea is located near the center of Kyushu island
on the south of Japan. It covers approximately 1,700 sq.km.
surrounded by four prefectures, namely Saga, Fukuoka,
Kumamoto and Nagasaki. It is recognized as an inland sea
with the largest tidal range. During spring tide, the tidal
range varies from 3 m at the Hayasaki strait to 6 m at the
Suminoe harbor which is located at the innermost part of
the sea. There exist some meteorological and gaging stations
located in or near the Ariake sea. These stations have been
monitoring and recording climatic conditions, tidal current
and water level in the sea. The observation data have been
reported by some researchers, e.g., Watanabe (1988),
Fujimoto (1988), and others.

In studying dispersion of pollutants and transport of
sediment in the Ariake sea, more details about current
pattern and tidal fluctuation are needed. This information
can be obtained by using a simulation model. Several
mathematical models have been developed and applied to
simulate hydrodynamic circulation in the Ariake sea. Each
model has some ditferent advantages and disadvantages
compared with others.

In this study, a hydrodynamic model is developed using
the finite element method. The governing equations include
the vertically averaged two-dimensional continvity and
momentum equations. The Galerkin weighted residual
method is used in model formulation. The developed model
is verified and applied to simulate hydrodynamic phenomena
in the Ariake sea.

Continuity and Momentum Equations

The vertically averaged two-dimensional continuity and
momentum equations (Pritchard, 1971) are used as the basic
governing equations in model development. These equations
are
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where h is total water depth, h, is averaged water depth, u
and v are flow velocities, g is gravitational acceleration, P,

is atmospheric pressure, p is water density, f is coriolis .

factor, T, and T, are sutface shear siresses, T,, and T, are

bottom shear stresses.

From these equations, the Galerkin weighted residual
method is applied. With this method, water depth and flow
velocities, which are dependent variables in the governing
equations, are expressed in terms of the values at the nodal
points identified in the study domain. The original equations
which are in the form of partial differential equations are
transformed to a set of algebraic equations in which water
depths and flow velocities at the nodal points are unknown
variables. The continuity and momentum equations can be
written in the finite element form as
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Solution Techniques

In this study the separated time technique is used in
solving the time dependent finite element equations, i.e., the
water level matrix H and velocity matrices U and V are
computed at different halves of the time step. The time
derivatives of H, U and V are approximated by using the
trapezoidal rule. The water depth at time ¢+ at/2 can be
computed from
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where A' and B’ are functions of U and V. These equations
are solved by using the Gauss elimination method providing
that water levels at the open boundary nodes are specified.

Similarly, the velocities U and V at time 1+ at can be
computed from

UnAt =P Ut + Qu (8)

and

VpAt =P Vt + Qv (9)

where @, and Q, are functions of U and V at time ¢ and H
at time +at/2.
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In solving the velocity matrices, the velocities normal to
the boundary are usually specified. So the velocities U and
V at the boundary nodes must be transformed to the normal
and tangential velocities U, and U,. This can be done by
merging Egs.(8) and (9) which will result in the following
equation:

Unt = Py Uiy + Q o
where
U, = {(UV,0,V,..UV} an
Py,0 P,0 .....P, 0
0 P, 0 P 0 P,
P, = (12)
pP,0 P,0 ... P,0
0 P;0 P 0o P,
and
0., = {0,Q;0,0Q; 0.0} a3)

The velocity matrix U, is transformed to the matrix U,
by replacing the velocity component at the boundary nodes
U, and V, by their normal and tangential components U,
and U, ie.

U, =AU, 14
where
v, = {U,VU,V,..U,U, .UV} 15)
and
1000.00..00
0100..00..00
0010..00..00
0001.00..00
A4, = as)
0000“'« .00
0000.. *..00
0000..00..10
0000.00 1
in which
cos 6, -sin 6,
oy = amn
sin 0, cos 6,

where 6, is an angle between the normal direction and the
X~axis.

The velocity matrix U,, in Eq.(10) is then replaced by
Eq.(14). With specified normal velocities at the boundary
nodes, the velocity matrix U, at time +af can be computed
provided that U, at time ¢ and H at time ¢+4t/2 are known.

Model Application

The developed model is verified and applied to study the
hydrodynamic circulation in the Ariake sea. The Ariake sea
is divided into 194 ftriangular elements with 133 nodal
points as shown in Figure 1. Data on mean water depths at
the nodal points are fed as input data together with some
other parameters. The fluctuating water level at the
Hayasaki strait and the normal flow velocities along the
shoreline are considered as the boundary conditions. The
results obtained from the model are plotted to show the
current patterns and profiles of water levels in the sea.

Figure 1. Element configuration of the Ariake sea.
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