I1-4 EARFLPEE S EHT A E 2 (1992.3)

FERIBREIE R B RN D —ETH

Non-Linear Effect on The Velocity Fields
In

Wave Boundary Layer

Kagoshima Univ. SM. JECE, M. S. A, Chowdhury

Kagoshima Univ, M. JECE. Michio Sato.
Introduction
The magnitude and the predominant direction of the sediment transport near the bottom are known to be closely
related to the flow in the wave induced boundary layer. The property that the magnitude of water particle velocity
at the Crest phase differs from the one of the Trough phase due to the non-linearity of the waves plays an important
role to determine the sediment movement. The non-linearity of the waves become predominant ncar and in the surf
zone, where the sediment movement occurs vigorously. Therefore, in order to describe the flow near the bottom and
relationship between the flow and the movement of the sediment, an analysis donc by using non-lincar boundary
layer cquation and the finitc amplitude wave theory is essential to represent the velocity field. Many theoretical and
experimental studies have been done by others on the basis of wave boundary layer.
In this study, a non-linear solution of wave boundary layer is obtained numerically based on two dimensional
boundary equations and the method consists of assuming periodicity and representing variation with x by the Fourier
expansion. This procedure enables us to reduce an independent variable x and to perform the calculation within the
limited memory space by Disk Operating System of the Personal Computer, but we have to solve as much equation
as the Fourier components.

Numerical Analysis and Calculation

A two-dimensional situation is considered, in which X«is measured along the plane of the horizontal bottom
boundary and Z is measured perpendicular to the horizontal bottom boundary. The velocity components arc
represented as u and w in the direction of x and z respectively. Assuming an incompressible homogencous tluid of
constant depth, the two-dimensional momentum equation and continuity equation are given as follows:
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The over bar denotes the Reynolds average. The nondimensionalized cquations become
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Where, K is the nondimensional kinematic viscosity for laminar flow given by k=vo/u, ? and nondimensional cddy
viscosity for the turbulent boundary layer. For the latter casc, k is rclated to the turbulent cnergy through cq. § and
6. (Spalding and Launder)
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v is the Kinematic viscosity of the fluid which is taken 0.01 cm?sec at 20° C. The initial condition is taken from
the coefficient of exponential term of cos(k~1). The time variable is replaced by a diserete sequence of time—instants.
Assuming periodicity of the flow with k, velocity @i is expressed by eq. 10. The value of C, is essential to find out
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the velocity ficld.
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Computational technique

The Forward time centered space (FT'CS) scheme is used to perform the numerical analysis. To keep the stability
one wave period is divided into six thousand time steps along the lime axis. A non lincar grid system is used by
transferring the vertical z axis into , where the fine spacing grids arc taken ncar the bottom boundary to make the
calculation more bright. § varies from zero to 1 in the vertical axis. Zero is taken at the bottom and One is taken
at the upper boundary respectively. The study is done &, is equal to 2. There were 40 division between the lower
and upper boundary so AE becomes 0.025. When the upper boundary is according to the linear wave theory then

we have considered y equal to one.

Result and Discussion.

The calculation for laminar boundary layer is complected and the One equation model for the turbulent boundary
layer is still under process. The calculation is done up to 6 cycles and 30 cycles. The data for the graph is taken at
the interval of thirty degree. The velocity profile of two different calculated cycles have compared. It is found that
after 3 cycles (When t=6x) the calculation becomes effective. It is also found that mostly there is no difference
between 6 and 30 cycle data. The velocity field based on the linear wave theory is shown in fig-1 and the velocity
field based on the finite amplitude wave theory is shown in fig-2. While the calculation starts, it calculate from the
lower boundary to upper boundary. The profile of upper boundary has been checked into lincar wave theory and
finitc amplitude wave theory which shows the good agreement.
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