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FLUID RESISTANCE DUE TO OSCILLATION OF COLUMNS IN STILL WATER
Kagoshima Univ. Susumu YOSHIHARA,

Q Venkataramana KATTA and Kagekazu NIRE
1. INTRODUCTION: Accurate estimation of wave forces acting on various components of
structures is one of the most important steps in any offshore design. The analytical methods
such as diffraction theory ignore the fluid viscous effects and hence are not reliable when
drag force is significant as in the case of slender members (d/L<0.2). Morison gave an
empirical formula for calculating the wave forces on slender stationary members which is now
widely employed in engineering practice. Brebbia generalised the Morison’s equation for
oscillating members by considering the relative motion.

The authors suggest another modification to the Morison’s equation by treating the effects
of fluid motion and motion of the members seperately. When waves act on any structure, owing
to the loading actions of water particles it begins to oscillate. At the same time, the
damping forces due to the very movement of the structure as well as due to the waves prevent

the oscillations from growing. It might be a method to divide the mutual effects of the water

and the structure into two portions: one is the loading force causing the structure to
oscillate, another is the restoring force restraining the oscillations from growing. The
former is called the wave force and the latter wmay be named as fluid resistance. The net

effective wave force p on an oscillating structure is regarded as the algebraic sum of these
two forces. The wave force F is represented by the Morison’s equation where as the fluid

resistance R by an equation similar to the Morison’s equation. Mathematically:
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In this paper the authors have investigated the fluid resistance component.

2. THEORETICAL COMPUTATIONS: The inertia component of the fluid resistance is computed by

diffraction analysis. Fig.l shows the definition sketch of the column. The fluid is assumed
to be nonviscous, irrotational and incompressible. Airy Qave theory is used. The differential
equation for the velocity potential due to the diffracted wave field is solved using the
boundary conditions at the sea surface, sea bottom and the column surface. It is then
substituted in the Bernoulli’s pressure equation which on integration gives the total
horizontal force on the column. The coefficient C; is shown against d/L ratio for different
d/h ratios in Fig.2. For the case of slender members C; approaches unity.
3. RXPERIMENTS: The experiments were carried out in a two dimensional water tank of
height=1.2m, width=lm and length=30m. The depth of water in the tank was 0.75m. The test
model was a hollow cylindrical column made of P.V.C. plastic. The dimensions were outer
diameter=60mm, inner diameter=56.6mm and length=0.9m. The bottom was hinged to the floor of
the tank and the oscillation was in the form of rigid rotational displacement. The frictional
resistance at the hinge was neglected. The hinge was so designed that the <column could
oscillate in one direction only. (single degree of freedom system).

The column top was given initial displacement and then was released from this stationary
displaced position. The free-vibration response was recorded using a 16mm cine camera.

4. EQUATION OF MOTION: Fig.3 is the schematic diagram of the column under oscillation.

Using the principle of dynamic equilibrium, the equation of motion is:
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On rearranging the terms and linearising the demping term, above equation can be written as:
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5. DATA ANALYSIS AND RESULTS: Fig.4 shows typical free-vibration response patterns observed

in the experiments. The column oscillates about the neutral position with a constant circular

frequency g called the natural frequency. The magnitude of the response diminishes

exponentially as the system damps out. The mean value ofwo and the corresponding value of C;
are shown in table-1l along with their theoretical equivalents obtained by diffraction theory.

Fig.5 is a plot between the displacement x of the column top and the corresponding

equivalent damping ratio ho. The values of the damping ratio based on free vibration

responses for small initial displacements the

are smaller in comparison with those based on
free vibration responses for larger initial displacements. When the amplitude of vibration is
large, the fluid viscous forces are also large and this might be the reason for the increase

in the value of the damping ratio. Fig.6 shows the values of the damping ratio based on the

initial displacements. The damping ratio increases linearly with the initial displacement.
Experiment | Theory
wo ( rad/sec) 3.39 3.19 Table-l
Cé 0.87 1.00
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NOTATIONS: d=significant length of the member(=diameter of the column); L=wave length; Cm &

Cd=hydrodynamic coefficients; C; & C;:fluid resistance coefficients; u & Su/St=horizontal
water particle velocity and acceleration at the centre position if the column were not
present; x=horizontal displacement of the column; L= angular displacement of the colunn;

/z=amplitude of the angular displacement; B=buoyancy force on the column; h=depth of water.
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