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An Analytical Solution of a Cavity Expansion Problem in a Fixed Finite Soil Mass
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1. Introduction
Analysis of the expansion of cavities in an ideal soil
mass provides a direct approach to study the stress
and the displacement fields around cavities with a
number of important geotechnical problems. There
are many theories aiming at certain features and
based on some assumptions. However, most of them
have assumed the soil as infinite media or have
considered the free expansion of the cavity while
there are several instances in practice where soil is
treated by a group of foundations or we need to apply
geotechnical remedies under existing structures. In
such cases, effectively the cavity is bounded to
expand freely. So here, we are concern with a
spherical cavity problem in a fixed finite soil mass.
The soil is assumed to be homogenous and an
isotropic elasto—plastic material. The solution in
basic follows the methodology given by Yu (1993) but
with different boundary conditions.

2. Problem definition and theory

Fig. 1 depicts the problem. A hydrostatic pressure, po,
acts throughout the soil. As the internal pressure
increases to value p from its initial value po, the
inner boundary, a., expands to radius, a, while the
outer boundary, be, is bounded to expand. The soil
behaves elastically and obeys Hooks law until the
onset of yielding which is determined by the Mohr-
Coulomb criteria: ao, -, =Y o))
where
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boundary conditions:  4f,.,.,~0 ; |,e0=-p 3

2.1 Elastic solution

As the cavity pressure increases from its initial value,
Po, the deformation of the soil is first purely elastic.
Under conditions of radial symmetry the elastic

stress—strain relationship may be expressed as:
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Integrating the above equation for the initial

conditions, o, =og =-p, and u =0 5)
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Solution of Egs. 2 and 6, subject to the boundary
conditions (Eq. 3) can be shown to be
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Initial yielding occurs first at the cavity wall at the

stage when cavity pressure, p, reaches to value

1.5a(1-2v)pg + Y{O_S(l w{l:;o)s -(1-21/)} (8)
1.5a(1-2v)+ (1—a){0.5(1+v{;3]3 -(t- 2v)}

P=py=

2.2 Elasto—plastic solution

A plastic zone of radius ¢ (Fig. 1) forms around the
inner cavity wall with an increase in the applied
pressure, p.

2.2.1 Stresses 1n the plastic region

The which satisfy the
equilibrium condition (Eq. 2) and the yield criteria
(Eq. 1), are found to be
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stress components,

where & =a/(1-a) and A is constant of integration.

—A-316—



2.2.2 Stresses in the elastic region
The stress components in the elastic region can be

obtained from Egs. 2, 3 and 6 as follows
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where B is second constant of integration.
Applying the continuity of stress components at the
elastic—plastic interface, constants come out to be
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3. Results and Discussion
Summary of the results is given in Table 1. For all
the values of injection pressure, p, in the elastic
range, Or decreases with distance, r/a,, from the
value p at the inner boundary, a/a,, and becomes
Table 1 Summary of the Results

almost of value po, at r/ao = 3.0. In the same manner,
g, increases with 1/a, and also becomes of value po at
the same distance (Fig. 2). If p, is more than the
yielding pressure, piy, the solution is elasto—plastic
(Fig. 3). For c¢/bo = 0.5, or decreases with r/a, from the
value p at a/as to value 408.7 at elastic—plastic
boundary, c/a,, and further decreases to value 246.4
at the outer boundary. oy decreases with r/a. from the
value 594.4 at ala, to value 130.5 at c/a, while
further increases to value 211.6 at the boundary.

4. Conclusions

Based on the elasto-plastic theory, a general
analytical solution has been developed for a cavity
expansion problem in a finite soil mass. It requires
less number of design parameters (Table 1) to plot
pressure—expansion curve. This solution may have
many practical applications. Among them are the
determination of the end bearing capacity of deep
the of the

confinement effect of compaction grouting method.

foundations and quantification
The analysis can be more elaborated to have solution
for cylindrical cavity problem including a geometry

parameter in the basic equations (Eqs. 2 and 4).

Preprocessor Elastic solution Elasto—plastic solution
Input: Input: Injection pressure, p; Input: o/ {¢/as = ¢/bo x bo/ao)
Elasticity parameters, E & v; 1000, 0.2 Po< D <Ply . . | Outputs: Injection pressure,p, a/ao,
C & ¢ parameters of the soil; 5, 30 Outputs: a/a, or & q vs. r/ao (Fig. 2) o & Oy vs. 1/a, (Fig. 3)
Dilation angle, ; 10° SN p(kPa) alao SNch, ¢/an  aao p &Pa)
Initial value of hydrostatic pressure, po; 200 1 200.0 1.000 1 01 125 102 484.5
Initial sphere geometry bo/ao; 12.5 2 2418 1.003 2 03 375 140 1424.6
Note: All the stresses are in kPa. 3 2835 1.005 3 05 625 208 1800.6
Outputs® Initial yielding pressure, p1y; 367.1 4 3253 1.008 4 07 875 3.02 2131.6
Geometry, a/as 1.0101 5 367.1 1.010 5 09 1125 462 2941.2
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Fig. 2 or & oy vs. r/a. (Elastic solution)

r/a,

Fig. 3 or & O vs. r/a, (Elasto—Plastic solution)
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