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1. INTRODUCTION
Many time-domain and frequency-domain analytical methods have been developed to identify structural
parameters and to evaluate structural damage through analyzing the time-history of motions in struc-
tures. However, it is noticed that sometimes the accuracy of identification is greatly influenced by
noise. To avoid this shortcoming, a various modal analysis inspections are recently develpoed to eva-
luate structural damage. In this study, based on our previous study'’ for undamped structures, a modal
analysis method is presented to identify structutal degradation for damped structures by using lower
measured modes. Moreover, a steel truss structure has been analyzed in order to demonstrate the avail-
ability of the method.
2. Basic formulations
A equation of motion for damped free vibration system with N degrees of freedom is described as
MUK} ope p*+[CH K} ppe o+ K K =1{0}; p=1, 2, = = -, N . (1
where [M]=mass matrix, [K] =stiffness matrix, g, is the pth complex natural frequency and (X}, is
pth eigenvector corresponding to g ,. For structures, if L lower modes have been measured, those modes
can be expressed as follows
[QIuxL =diag (u.? u22 ... 1% =[Q1L.+i[Q1e; [®Inxe =( Xy}, Ko} oooo Ko} )eenenn.t. (2)
Replacing the g, and (X}, by [Q?] and [®] respectively, Eq. (1) becomes
MlellQ]+cI[el[Q]+[KI[®]=[0]
Traditionally, Rayleigh damping has been assumed in most dynamic structural analysis because it is
convenient for mathematical treatment. The damping matrix for Rayleigh damping may be written as

[Cl=p.M1+B.03 (4)
in which 8., B:=scalars. For Rayleigh damping, substituting Eq. (4) into Eq. (3). yields®

KIXbe=DM X}y {(—Cuo®+B1us) (Baus+)y L (5)

The relation between pth natural frequencies w,(undamped) and @% (damped) are®

ﬂp:'_gpa)p"’iw’p: wp:w’l’ VI_EPZ H i2=—1 .......... (6)

in which ¥ ,=the pth damping ratio.
Particularly for Rayleigh damping, because of

zfpwpzﬁl+ﬁzwpz .......... (7)
the coefficients 8, and B: can be obtained as follows
Bi=w, 102012 102)/(w:*—w3?); B:=(2F10:—2F.0:)/(w: —w2") ... (8)

Denote [K]1=[Ko] +[AK], in which [AK] is the change of stiffness matrix before and after the da-
mage. Substituting Egs. (2), (4) and [KI(=[Ke]+[AK]) into Eq. (3), the arranged equations for real-
part and imaginary-part respectively are

[AKIT,]1=[2.]; [AKIT]=[E.];
where [l = (8.[@][Q].+[®]) and [E:]ne = —MIIONIQ].—[Q%1)~ 8. M [®I{Q].— [Ko]
[P0 [Telwe =8,[01[Q]s and [Z v =—2X MI([PI[R1.[Q1.— B MIPI[Q]s~ Kol [ 2],

The Eq. (9) could be further expressed as

(A1) [T .DD=0(=,.). (8.1 1)
Therefore the least-square estimation®’ of [AK] is
[AKILLT ], [T )1=[{E.]. (2.} (12)

in which [[E.],[Z.1]" is pseudoinverse matrix* of [[Z.], [E.]].
The change ratio Nkpo/Kope(p=1,2, - « +,N) for diagonal stiffness coefficients can be used to de-
tect the location of damage according to the magnitude of the change ratio. ¥hen the node with a re-
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markable change ratio is detected, each non-zero stiffness coefficient in the column (or row) corres—
ponding to this node in matrix [¥X] is multiplied by an unknown coefficient a, respectively. Therefore
the [K] is represented as [K(a)], in which @ is the set of a«. Substituting the [K(a)] into Eq. (3),
the a could be solved by the use of arranged equations. The details has been given in reference 1)

3. NUMERICAL EXAMPLE

' Fig. 1 shows a steel truss structure which is described
as a FEM model with 12 nodes, 25 elements and 21 degree-of-
freedom. The cross-sectional areas of the structural members
are as follows: Bottom chords 0.06 m*;top chords 0.0312 m®;
verticals 0.024 m®; diagonals 0.024 m®>. The damping ratios
£, and ¥, are equal to 2%. In this example, it is assumed
that P,(see Fig. 1) is constant load of 20 tf and P. incre-
ases monotonically, also the stress-strain relation of all
materials are elastic-perfectly-plastic model. While full
areas of cross-sections of elements (@ (nodes 1-2) and @
(nodes 2-3) have been yielded, the vibrational modes are
calculated as the modes of damaged state of this structure
The calculated frequencies are: £,=1.008 Hz and f,=5.614
Hz. Moreover, the coefficents(see Eq. (8)) are:8.:=0.034 and
B2=0.00604. Furthermore, the locations of damage are de-
tected from Fig. 2 in which nodes 2 and 3 are remarkable. On
the other hand, as shown in Fig.3 for our previous method
even if 4 modes are used, it seems there are stiffness ch-
anges in almost all the nodes. As the location of damage
has been detected, the damaged matrix [K(a)] can be identi-
fied by the use of aforementioned procedure. Also the iden-
tified result and error ER.: are shown in Table 1, in which
the identified result is well satisfied. As for the effect
of measurement error of modal parameters on identification
accuracy, similarly mode shapes has a strong effect® on
identification accuracy and frequencies and damping ratio
have comparatively weak ones

4. CONCLUSIONS

A modal analysis method is presented to identify both
the location and severity of damage for damped structures.
This method have better sensitivity of damage location de-
tection than previous study'’ for undamped structures.
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Fig.1 A steel truss
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Fig.2 Damage location detection of
this method by using 1~2th modes
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Fig.3 Damage location detection of pre-
previous method” by using 1~4th modes
Table. 1 Identified result

DAMAGED
NGDE | UNDANAGED
LDENTIFIED | EXACT Buve
2-X 232168. ¢ 24161.8 2448191 1.3 X
2-Y 957317.8 94928. 6 95310.7 (0.4 X
3-X 258938.1 154568. 5 | 154073.6 0.3 X
3-Y 84575.2 84094. 3 84563.3)0.6 X

ER((=100X (k(lEXACT“kIllDEN.)/kIIEXACT



