MODAL ANALYSIS INSPECTION FOR DAMAGE EVALUATION IN STRUCTURES

Graduate student, The Univ. of Tokushima, Member, OH.Y., YUAN Faculty of Engrg., The Univ. of Tokushima, Member, K., HIRAO Faculty of Engrg., The Univ. of Tokushima, Member, T., SAWADA Faculty of Engrg., The Univ. of Tokushima, Member, Y., NARIYUKI

1. INTRODUCTION

Many time-domain and frequency-domain analytical methods have been developed to identify structural parameters and to evaluate structural damage through analyzing the time-history of motions in structures. However, it is noticed that sometimes the accuracy of identification is greatly influenced by noise. To avoid this shortcoming, a various modal analysis inspections are recently developed to evaluate structural damage. In this study, based on our previous study¹⁾ for undamped structures, a modal analysis method is presented to identify structutal degradation for damped structures by using lower measured modes. Moreover, a steel truss structure has been analyzed in order to demonstrate the availability of the method.

2. Basic formulations

A equation of motion for damped free vibration system with N degrees of freedom is described as $[M]\{X\}_p \mu_p^2 + [C]\{X\}_p \mu_p + [K]\{X\}_p = \{0\}; p = 1, 2, \cdots, N$ (1) where $[M]$ = mass matrix, $[K]$ = stiffness matrix, μ_p is the pth complex natural frequency and $\{X\}_p$ is pth eigenvector corresponding to μ_p . For structures, if L lower modes have been measured, those modes can be expressed as follows $ [\Omega]_{L\times L} = \text{diag } (\mu_1^2, \mu_2^2, \dots \mu_L^2) = [\Omega]_* + i[\Omega]_*; [\Phi]_{N\times L} = (\{X_1\}_*, \{X_2\}_*, \dots \{X_L\}_*)$
where [M]=mass matrix, [K] = stiffness matrix, μ_p is the pth complex natural frequency and $\{X\}_p$ is pth eigenvector corresponding to μ_p . For structures, if L lower modes have been measured, those modes can be expressed as follows $[\Omega]_{L\times L} = \text{diag } (\mu_1^2, \mu_2^2, \dots \mu_L^2) = [\Omega]_* + i[\Omega]_*; [\Phi]_{N\times L} = (\{X_1\}_*, \{X_2\}_*, \dots \{X_L\}_*) \dots (2)$ Replacing the μ_p and $\{X\}_p$ by $[\Omega^2]$ and $[\Phi]$ respectively, Eq. (1) becomes $[M][\Phi][\Omega^2] + [C][\Phi][\Omega] + [K][\Phi] = [0] \qquad (3)$ Traditionally, Rayleigh damping has been assumed in most dynamic structural analysis because it is convenient for mathematical treatment. The damping matrix for Rayleigh damping may be written as $[C] = \beta_1[M] + \beta_2[K] \qquad (4)$ in which $\beta_1, \beta_2 = \text{scalars}$. For Rayleigh damping, substituting Eq. (4) into Eq. (3), yields $[K](X)_p = [M](X)_p = (-\mu_p^2 + \beta_1 \mu_p) / (\beta_2 \mu_p + 1)_p$ The relation between pth natural frequencies ω_p (undamped) and ω'_p (damped) are $\mu_p = -\xi_p \omega_p + i \omega'_p; \omega_p = \omega'_p / \sqrt{1 - \xi_p^2}; i^2 = -1$ in which $\xi_p = \text{the pth damping ratio}$. Particularly for Rayleigh damping, because of $2\xi_p \omega_p = \beta_1 + \beta_2 \omega_p^2 \qquad (7)$
pth eigenvector corresponding to μ_p . For structures, if L lower modes have been measured, those modes can be expressed as follows $ [\Omega]_{L\times L} = \text{diag } (\mu_1^2, \mu_2^2, \dots \mu_L^2) = [\Omega]_* + i[\Omega]_b; \ [\Phi]_{N\times L} = (\ \{X_1\}_{1}, \ \{X_2\}_{1}, \dots \{X_L\}_{1}), \dots (2) $ Replacing the μ_p and $\{X_p, by \ [\Omega^2]_{2}\}_{1} = [\Omega]_{2} =$
can be expressed as follows $ [\Omega]_{L\times L} = \text{diag } (\mu_1^2, \mu_2^2, \dots \mu_L^2) = [\Omega]_s + i[\Omega]_b; \ [\Phi]_{N\times L} = (\ \{\chi_1\}_s, \ \{\chi_2\}_s, \dots \ \{\chi_L\}_s)_s$
$ [\Omega]_{L\times L} = \text{diag } (\mu_1^2, \mu_2^2, \dots \mu_L^2) = [\Omega]_s + i[\Omega]_b; [\Phi]_{N\times L} = (\{\chi_1\}, \{\chi_2\}, \dots \{\chi_L\}), \dots (2) $ Replacing the μ_p and $\{X\}_p$ by $[\Omega^2]$ and $[\Phi]$ respectively, Eq. (1) becomes $ [M][\Phi][\Omega^2] + [C][\Phi][\Omega] + [K][\Phi] = [0] \qquad \qquad (3) $ Traditionally, Rayleigh damping has been assumed in most dynamic structural analysis because it is convenient for mathematical treatment. The damping matrix for Rayleigh damping may be written as $ [C] = \beta_1[M] + \beta_2[K] \qquad \qquad (4) $ in which $\beta_1, \beta_2 = \text{scalars}$. For Rayleigh damping, substituting Eq. (4) into Eq. (3), yields $ [K](X)_p = [M](X)_p - (\mu_p^2 + \beta_1 \mu_p) / (\beta_2 \mu_p + 1) $
Replacing the μ_p and $\{X\}_p$ by $[\Omega^2]$ and $[\Phi]$ respectively, Eq. (1) becomes $[M][\Phi][\Omega^2]+[C][\Phi][\Omega]+[K][\Phi]=[0]$
[M][Φ][Ω^2]+[C][Φ][Ω]+[K][Φ]=[0]
Traditionally, Rayleigh damping has been assumed in most dynamic structural analysis because it is convenient for mathematical treatment. The damping matrix for Rayleigh damping may be written as $ [C] = \beta_1[M] + \beta_2[K] $
convenient for mathematical treatment. The damping matrix for Rayleigh damping may be written as $ [C] = \beta_1[M] + \beta_2[K] $
[C] = β_1 [M] + β_2 [K]
in which β_1 , β_2 = scalars. For Rayleigh damping, substituting Eq. (4) into Eq. (3), yields ²) [K] (X) $_p = [M]$ (X) $_p : \{ -(\mu_p^2 + \beta_1 \mu_p) / (\beta_2 \mu_p + 1) \}$
[K] (X) $_{\rm p}$ = [M] (X) $_{\rm p}$ { $-(\mu_{\rm p}{}^2 + \beta_{\rm 1}\mu_{\rm p})/(\beta_{\rm 2}\mu_{\rm p} + 1)$ }(5) The relation between pth natural frequencies $\omega_{\rm p}$ (undamped) and $\omega'_{\rm p}$ (damped) are ²⁾ $\mu_{\rm p} = -\xi_{\rm p}\omega_{\rm p} + i\omega'_{\rm p}; \; \omega_{\rm p} = \omega'_{\rm p}/\sqrt{1-\xi_{\rm p}{}^2} \; ; \; i^2 = -1 \;$
The relation between pth natural frequencies $\omega_{\rm p}$ (undamped) and $\omega_{\rm p}'$ (damped) are ²⁾ $\mu_{\rm p} = -\xi_{\rm p}\omega_{\rm p} + {\rm i}\omega_{\rm p}'; \; \omega_{\rm p} = \omega_{\rm p}'/\sqrt{1-\xi_{\rm p}^{2}} \; ; \; {\rm i}^{2} = -1 \qquad .$
in which ξ_p = the pth damping ratio. Particularly for Rayleigh damping, because of $2\xi_p\omega_p = \beta_1 + \beta_2\omega_p^2$ (7)
Particularly for Rayleigh damping, because of $2\xi_p \omega_p = \beta_1 + \beta_2 \omega_p^2$ (7)
$2 \xi_{\mathfrak{p}} \omega_{\mathfrak{p}} = \beta_{1} + \beta_{2} \omega_{\mathfrak{p}}^{2} \qquad \qquad \dots \dots \dots (7)$
the coefficients β_1 and β_2 can be obtained as follows
$\beta_1 = \omega_1 \omega_2 (2 \xi_2 \omega_1 - 2 \xi_1 \omega_2) / (\omega_1^2 - \omega_2^2); \beta_2 = (2 \xi_1 \omega_1 - 2 \xi_2 \omega_2) / (\omega_1^2 - \omega_2^2) \qquad (8)$
Denote $[K] = [K_o] + [\triangle K]$, in which $[\triangle K]$ is the change of stiffness matrix before and after the da-
mage. Substituting Eqs. (2), (4) and $[K] (= [K_0] + [\triangle K])$ into Eq. (3), the arranged equations for real-
part and imaginary-part respectively are
$[\triangle K][\Gamma_1] = [\Xi_1]; [\triangle K][\Gamma_2] = [\Xi_2]; \qquad(9)$
where $[\Gamma_1]_{N\times L} = (\beta_2[\Phi][\Omega]_* + [\Phi])$ and $[\Xi_1]_{N\times L} = -[M][\Phi]([\Omega^2]_* - [\Omega^2]_*) - \beta_1[M][\Phi][\Omega]_* - [K_0]$
$[\Gamma_1]; \ [\Gamma_2]_{N \times L} = \beta_2[\Phi][\Omega]_{b} \ \text{and} \ [\Xi_2]_{N \times L} = -2 \times [M] ([\Phi][\Omega]_{b}[\Omega]_{b} - \beta_1[M][\Phi][\Omega]_{b} - [K_0][\Gamma_2].$
The Eq. (9) could be further expressed as
$[\triangle K][[\Gamma_1], [\Gamma_2]] = [[\Xi_1], [\Xi_2]] \qquad \dots \dots \dots (11)$
Therefore the least-square estimation ⁴⁾ of [AK] is
$[\triangle K][[\Gamma_1], [\Gamma_2]] = [[\Xi_1], [\Xi_2]]^{+} \qquad \dots \dots \dots (12)$
in which $[[\Xi_1], [\Xi_2]]^+$ is pseudoinverse matrix ⁴⁾ of $[[\Xi_1], [\Xi_2]]$.
The change ratio $\triangle k_{pp}/k_{0pp}(p=1,2,\cdots,N)$ for diagonal stiffness coefficients can be used to de-
tect the location of damage according to the magnitude of the change ratio. When the node with a re-

markable change ratio is detected, each non-zero stiffness coefficient in the column (or row) corresponding to this node in matrix [K] is multiplied by an unknown coefficient α_{κ} respectively. Therefore the [K] is represented as [K(α)], in which α is the set of α_{κ} . Substituting the [K(α)] into Eq. (3), the α could be solved by the use of arranged equations. The details has been given in reference 1).

3. NUMERICAL EXAMPLE

Fig. 1 shows a steel truss structure which is described as a FEM model with 12 nodes, 25 elements and 21 degree-offreedom. The cross-sectional areas of the structural members are as follows: Bottom chords 0.06 m2; top chords 0.0312 m2; verticals 0.024 m²; diagonals 0.024 m². The damping ratios ξ_1 and ξ_2 are equal to 2%. In this example, it is assumed that P. (see Fig. 1) is constant load of 20 tf and P. increases monotonically, also the stress-strain relation of all materials are elastic-perfectly-plastic model. While full areas of cross-sections of elements (1) (nodes 1-2) and (2) (nodes 2-3) have been yielded, the vibrational modes are calculated as the modes of damaged state of this structure. The calculated frequencies are: $f_1 = 1.008$ Hz and $f_2 = 5.614$ Hz. Moreover, the coefficients (see Eq. (8)) are: $\beta_1 = 0.034$ and $\beta_2 = 0.00604$. Furthermore, the locations of damage are detected from Fig. 2 in which nodes 2 and 3 are remarkable. On the other hand, as shown in Fig. 3 for our previous method1), even if 4 modes are used, it seems there are stiffness changes in almost all the nodes. As the location of damage has been detected, the damaged matrix $[K(\alpha)]$ can be identified by the use of aforementioned procedure. Also the identified result and error ER,, are shown in Table 1, in which the identified result is well satisfied. As for the effect of measurement error of modal parameters on identification accuracy, similarly mode shapes has a strong effect20 on identification accuracy and frequencies and damping ratio have comparatively weak ones.

4. CONCLUSIONS

A modal analysis method is presented to identify both the location and severity of damage for damped structures. This method have better sensitivity of damage location detection than previous study1) for undamped structures. REFERENCES: 1) Yuan, H.Y. and Hirao, K., et. al: Detection of stiffness degradation of structural elements from measurement of natural frequencies and mode shape, Journal of Struct. Engrg. Mech., Vol. 39A, JSCE, pp. 759-771, March, 1993. 2) Yuan, H.Y. and Hirao, K., et.al: Stiffness degradation identification of structures using modal analysis, J. Struct. Engrg., Vol. 40A, JSCE, pp. 795-805, March, 1994. 3) Togawa, H.: Vibrational analysis for finite element method, Science Book Company, 1975 (in Japanese). 4) Lowson, C.L. and Hanson, R.J.: Solving least squares problems, Prentice Hall, Englewood Cliffs, N.J., 1974.

Fig. 1 A steel truss.

Fig. 2 Damage location detection of this method by using 1~2th modes

Fig. 3 Damage location detection of preprevious method¹⁾ by using 1~4th modes Table. 1 Identified result

NODE	UNDAMAGED	DAMAGED		
		IDENTIFIED	EXACT	Exit
2-X	232168. 1	24161.8	24481.9	1. 3 %
2-Y	95737.8	94928.6	95310.7	0.4 %
3-X	258938.7	154568.5	154073.6	0.3 %
3-Y	84575. 2	84094.3	84563.3	0.6 %

 $ER_{ij} = 100 \times (k_{ijexact} - k_{ijiden.})/k_{ijexact}$