第1部門

鋼箱桁橋における腐食損傷が支点反力に与える数値解析的検討

京都大学大学院	学生員	○秀徳	優芽	京都大学大学院	正会員	杉浦	邦征
京都大学大学院	正会員	北根	安雄	高田機工(株)	正会員	花岡	康夫
京都大学大学院	正会員	五井	良直	高田機工 (株)	正会員	大久保	民 宣人

1. はじめに

鋼橋において、腐食や疲労によって荷重伝達部材が 損傷すると、剛性が低下し、構造物内の応力状態や支 点反力が健全状態から変化することが考えられるが、 このような構造物内の応力状態を構造系全体にわたっ て計測することは、現代の計測技術では限界がある. そこで橋梁の中でも比較的アクセスしやすい橋台上の 支点に着目し、損傷によって変化する支点反力により 構造物の損傷状態を推定し、鋼橋の健全性を評価でき ないかと考えた.しかし、鋼橋における各種損傷と支 点反力の関係は明らかにされていない.以上のことか ら、本研究では鋼単純非合成細幅箱桁橋を対象とし、 全橋 FEM モデルを用いて、腐食損傷が支点反力に与 える影響について検討する.

2. 対象橋梁及び解析モデル

2.1. 対象橋梁

図-1 に対象橋梁の一般図を示す.本研究の対象橋梁 は、高田機工和歌山工場で仮組立が行われた橋梁で、 橋長 70.5m,有効幅員 10m,縦断勾配 4.300%の鋼単純 非合成細幅箱桁橋である.

2.2. 解析モデル

本研究では,汎用有限要素解析ソフトウェア Abaqus2020を用いて,図-2に示すような解析モデル作 成し,解析を実施した.解析モデルは,図面をもとに, 床版,巻き立てコンクリート,ソールプレートはソリ ッド要素,鋼桁はシェル要素で作成した.対象橋梁は 非合成構造として設計されているが,本研究ではモデ ルを簡易にするために橋梁モデルは合成構造となって いる.材料特性は表-1に示すように与え,死荷重につ いては重力加速度(9.8m/s²)によって与えた.境界条件 は図-3に示すようソールプレートに対して線支承で与 え,SH1を固定支承,SH2は可動支承とし,材料非線 形,幾何学的非線形を考慮しない線形解析を行った.

図-2 解析モデル

表-1	材料特性

部材	$E(N/mm^2)$	ν	$\rho(\text{ton/mm}^2)$
鋼材	2.00×10 ⁵	0.3	7.80×10 ⁻⁹
巻き立てコンクリート	2.50×10 ⁴	0.2	2.50×10 ⁻⁹
床版	2.80×10 ⁴	0.2	2.50×10 ⁻⁹

3. 仮組立での解析モデルの妥当性の検証

図-4に仮組立の状況を示す.対象橋梁の鋼桁部分は, 仮組立時は図-5のようにそれぞれの支点のソールプレ ート部分でロードセルによって支持されている.仮組

Yuga SHUTOKU, Yasuo KITANE, Yoshinao GOI, Kunitomo SUGIURA, Yasuo HANAOKA, Nobuhito OKUBO Shutoku.yuga.24w@st.kyoto-u.ac.jp

ポスター I – 1

立では鋼桁の上フランジ上に重りを載荷し、支点反力 を測定する載荷試験を行った.表-2に載荷ケースを示 す.図-6に示す載荷位置に荷重を載荷することで、解 析モデル上で載荷試験を再現し実験値と解析値の支点 反力を比較することにより,解析モデルの妥当性を検 証した. 図-7 に支点 SH1G1 の載荷ケース間の支点反 力の変化量の解析値と実験値を示す. 誤差は載荷ケー ス 3→4 では 7kN, その他のケース間では 3kN 以下に なっており、解析モデルは対象橋梁鋼桁の支点反力の 分配を精度よく再現できていることが明らかになった.

4→5

 $1 \rightarrow 2$ $2 \rightarrow 3$ $3 \rightarrow 4$ 載荷ケース推移

図-7 SH1G1の支点反力の変化量(単位:kN)

4. 腐食損傷と支点反力の関係

10

-10

-30

4.1. 解析ケース

床版の合成作用は支点反力の分担に影響を与えて いると考え、図-8(a)に示すように、主桁に対して剛結 されたソリッド要素の合成床版があるモデル(W)と、 図-8(b)に示すように床版をなくし、主桁に対して床版 重量を等分布荷重で載荷したモデル(M)の2ケースの モデルを用いて解析を行った.腐食損傷は図-9の黒色 で示す G1 桁下フランジに与える. 箱桁橋における腐 食は箱桁内部に水が滞留することにより、下フランジ の上面に生じやすい¹⁾ため, 主桁 G1 の下フランジ上 面全体に対して, 主桁下フランジの中で一番板厚が小 さい桁端部分の板厚の半分である 11mm の板厚減肉を

4.2. 解析結果

図-10 に腐食減肉を与えた際の健全時からの支点反 力の変化を示す.解析モデル(W)の解析結果では健全 な桁(G2)の支点での反力の変化量は小さく、反力の減 少のほとんどが腐食した桁(G1)の支点で生じているこ とがわかる.これは腐食減肉による G1 桁の重量およ び剛性の減少が G2 桁の支点に影響していないことを 示しており,本橋梁における横桁の荷重分配効果は小 さいと判断できる.一方で,解析モデル(M)の解析結果 では腐食桁の支点である SH1G1 では支点反力が増加 し、健全桁の支点である SH1G2 では支点反力が減少 しており、合成床版は腐食を与えた時の支点反力の分 配に大きな影響を与えていることがわかる.

5. まとめ

仮組立試験の測定結果より、解析モデルが対象橋梁 の荷重分配を正しく再現できていることがわかった. 橋梁全体モデルに対して腐食損傷を与えて解析を行っ た結果、床版を荷重として考慮したモデルでの解析結 果から、横桁はほとんど支点反力を分配していない. また、健全時からの支点反力の変化は合成床版の有無 によって異なる結果になることが明らかとなった.

6. 参考文献

1) 国土交通省国土技術政策総合研究所:道路橋の定期点検 に関する参考資料(2013 年版)--橋梁損傷事例写真集-, 2013.