# 第Ⅱ部門

| 京都大学 | 学生員 | ○藤村直樹 |
|------|-----|-------|
| 京都大学 | 正会員 | 山上路生  |
| 京都大学 | 学生員 | 相澤航   |

# 1. はじめに

自然河川は降雨や融雪により常に流況が変化す るため、河川の流速を計測することは、適切な治水 事業・河川整備を行う上で極めて重要である.現在、 河川の流速計測手法としては、浮子を河川上で一定 区間流下させた際に要する時間から流速を算出す る浮子法<sup>1)</sup>が一般的に用いられている.この方法は、 計測が簡易かつコストが抑えられる一方で、計測精 度が観測員の技能に依存すること、洪水時の計測に は危険が伴うこと、計測に多大な時間を要すること などの課題がある.そこで本研究ではこれらの課題 を補うため、マイコンによって自律制御を行うボー ト型のロボット浮子を開発し、新たな流速計測シス テムを構築した.

#### 2. 計測原理

## (1) 概要

基本的な原理は通常の浮子法 1)と同様であるが, 本計測では浮子に GPS を搭載し,得られる位置座標 のデータをもとに流速を算出する.なお、浮子は水 流への追従性を考えると棒浮子のような円筒形状 が有利であるが,移動時の自律制御が難しいためボ ート型を採用する.計測開始後、ロボット浮子は流 速計測ポイントまで自律移動し,目標点到達後に一 定距離自由流下するが,この際の位置座標データか ら軌跡を求め, 浮子の流下速度を算出する. 流下後 は次の計測ポイントまで再び自律移動して自由流 下を行う.この手順を横断方向に繰り返し、すべて の測線での計測が終了した後、予め設定した地点へ 帰還する. 観測者は河岸から計測ポイントと帰還ポ イントを設定するだけで良く,またボート型ロボッ トを使用することで浮子の投入が難しいポイント でも計測することが可能である.計測システムのイ メージを図-1に示す.

Naoki FUJIMURA, Michio SANJOU and Wataru AIZAWA fujimura.naoki.44w@st.kyoto-u.ac.jp



図-1 計測システムのイメージ図

#### (2) 流速の評価方法

まず GPS から得られる緯度経度座標データから 緯度経度1秒あたりの実距離がそれぞれ 30.906m, 25.321m であることを利用し,各測線における*dt*秒 間のボート型浮子の流下速度*v*を以下の式により求 める.

# $v = \{ (dN \times 3600 \times 30.906)^2 + (dE \times 3600 \quad (1) \\ \times 25.321)^2 \}^{0.5} / dt$

ここで、*dN*、*dE*は*dt*秒間に変化する緯度経度である. 通常の浮子法では浮子の流下速度を河川流速とみ なすが、ボート型浮子は水面上部の表面積が大きい ため流下時に空気抵抗を受けやすく、浮子流下速度 と河川流速が一致しない.そこで流下中の浮子の運 動方程式から導出した以下の補正式を使用し、浮子 流下速度*v*を河川流速*V*へと変換する.

$$V = \left(1 + \sqrt{\frac{k_2}{k_1}}\right)v - \sqrt{\frac{k_2}{k_1}}c \tag{2}$$

ここで, cは風速であり, k<sub>1</sub>, k<sub>2</sub>は浮子の質量や抗力 係数,流体の密度などにより決定される係数である. 本研究では,この係数の値を室内水路および実河川 において実施した流下試験の結果をもとに算出し, 補正式を導出した.以下の式(3)~(5)に,①室内水路 での試験結果,②実河川での試験結果,③その両方 の結果を用いて導出した補正式をそれぞれ示す.

$$V = 1.0659v - 0.0301c \tag{3}$$

 $V = 1.0394v - 0.0394c \tag{4}$ 

$$V = 1.0408v - 0.0408c \tag{5}$$

実河川における自動観測試験ではそれぞれの補 正式を用いて予測流速を算出し,実流速との比較を 行った.

## 3. 浮子の試作と自律制御

試作したロボット浮子は船体に市販のラジコン ボートを使用し,全長約 64.0cm,横幅約 16.5cm,高 さ約 14cm で,重さ約 1.7kg,静水時の吃水は約 7cm である.外観を図-2 に示す.ロボットの自律制御に は、マイコンボードの Arduino およびオープンソー スソフトウェアの Processing を用いた. Processing は 浮子に搭載したスティック型 PC によって起動し, 観測者がリモートデスクトップソフトウェアであ る AnyDesk を介して河岸から遠隔操作することで, ロボットの位置情報の確認や計測・帰還地点の設定 などを行った.また,自律制御中は,ロボットに搭 載した GPS およびコンパスセンサーからロボット の位置情報とヨー角を取得し,それを元に適当なメ インモーターの出力およびラダー角度を算出した.



図-2 自律移動型浮子の外観

## 4. 実河川における自動観測試験

京都府亀岡市の桂川において,自律移動型浮子の 試作機を用いた自律制御による自動観測試験を実 施した.なお,計測時の河岸は風速 1m/s 以下の無風 に近い状態であった.自動計測中のロボットの軌跡 を図-3に示す.従来の浮子法を参考にし,計測目 標地点を河川横断方向に等間隔になるように3点設 定し,左岸側からロボットの自動計測を開始した. 帰還地点はリリース地点とほぼ同じ地点に設定した. 自動計測開始からロボットの帰還までに要した 合計時間はおよそ3分半であった.

また,それぞれの測線におけるロボットの流下速 度,流下速度を補正式①~③に代入してそれぞれ表 面流速へと変換した予測流速,電磁流速計で計測し た計測点の流速をまとめたものを表-1に示す.測線 番号は左岸側から順に 1~3 とした.予測流速と電 磁流速計で計測した計測点の流速との相対誤差は, 測線 1 においては 18.9~21.9%とやや大きくなった が,測線 2 と測線 3 ではともに相対誤差が 0.67~ 7.03%と良好な結果となった.



図-3 計測中の浮子の軌跡

表-1 実河川における横断面計測の結果

| 測 | 流下速度  | 予測流速(m/s) |       |       | 計測点流速 | 誤差(%) |       |       |
|---|-------|-----------|-------|-------|-------|-------|-------|-------|
| 線 | (m/s) | 1         | 2     | 3     | (m/s) | 1     | 2     | 3     |
| 1 | 0.946 | 1.008     | 0.983 | 0.985 | 0.827 | 21.94 | 18.91 | 19.07 |
| 2 | 1.115 | 1.189     | 1.159 | 1.161 | 1.247 | 4.66  | 7.03  | 6.90  |
| 3 | 1.093 | 1.165     | 1.136 | 1.138 | 1.173 | 0.67  | 3.14  | 3.01  |

## 5. おわりに

本研究における流速計測システムでは,安全性の 確保や計測時間の短縮に加え,少人数かつ観測者の 主観によらない信頼性の高い流速計測が期待でき, 試験では一部で良好な計測結果を得ることができ た.その一方で,自律制御システムや風速計測等に 関する課題も残っており,今後の継続的な開発研究 によって課題をひとつずつ解決していきたい.

参考文献

 土木研究所:平成 14 年度版水文観測, <u>https://www.pwri.go.jp/team/hydro\_eng/pdf/h14\_suim</u> on\_kansoku/06.pdf, 2001.