第 I 部門

京都大学工学部 学生員 〇黒瀬 壮馬

京都大学大学院 正会員 北根 安雄 京都大学大学院 正会員 五井 良直 京都大学大学院 正会員 杉浦 邦征

1. はじめに

鋼材は強度が高く長寿命であるため港湾施設 をはじめとする社会基盤構造物で広く用いられてい るが、とりわけ海洋環境は鋼材にとって厳しい腐食 環境であることは知られている.鋼管は腐食を受け ることにより板厚が減少し、耐荷性能が低下する. 鋼部材の腐食が耐荷性能に与える影響に関する研究 は、これまで数多くなされてきたが、腐食が変形性 能に与える影響に関しては多く存在しないのが現状 である.

本論文では海洋環境において 19 年間暴露された 腐食鋼管杭の板厚の計測データを反映させた解析モ デルを用いて曲げ荷重を与えた非線形有限要素解析 を行い,腐食鋼管表面の粗さと変形性能との関係を 調べた.

2. 対象とする腐食鋼管

本研究においては文献 [1]において,海洋環境下 において約 19 年間暴露されたスパイラル鋼管杭の うち図1に示す曝露環境の異なる4ヶ所から切り出 された鋼管に対して実施された腐食鋼管の実測結果 データを用いてモデリングを行った.腐食を受ける 前の公称寸法は外径406.4mm,厚さ9mmで,試験体 の切り出し長さ1200mmである.鋼種はSKK50 で あり,物性値は表1に示す通りである.それぞれの 鋼管に対して約2mmの間隔で周方向600点,長さ 方向601点の計360600点の板厚計測が行われた.

表1 鋼管の物性値

材質(鋼種)	SKK50
弾性係数[GPa]	205.8
ポアソン比	0.303
降伏応力[N/mm ²]	315

粗さパラメータとしては ISO25178-2 で定められ ている算術平均高さ S_a および最大高さ S_z を算出し, それらを各ケースの各領域における平均残存板厚 t_{ave} で除した無次元化平均高さパラメータ ζ_{S_a} および 無次元化最大高さパラメータ ζ_{S_z} を定義した.本研究 では腐食試験体の評点間距離 50mm の伸び性能と粗 さパラメータの関係を提案している Gathimba ら [2] の研究成果を参照するため、本研究における粗さパ ラメータの算出においても、解析対象とする鋼管の 表面形状データを 50mm×50mm ずつに区分し、各 範囲においてそれぞれ粗さパラメータを算出した.

解析モデルでは,腐食部の端部断面が剛体として 拘束されることを避けるため,図2に示すように 9mmの厚さをもつ健全部と解析対象である腐食部 をなめらかに接続するTaper部を腐食部の両端に設 けた.健全部・Taper部はそれぞれ長さ600mmであ り,モデル全体は1200mmの腐食部と合わせて 3600mmである.腐食状況は周方向に異なるため, 一つの腐食モデルに対して8方向に曲げ解析を行っ た.モデルには4節点1次低減積分シェル要素(S4R) を用いた.

Sooma KUROSE, Yasuo KITANE, Yoshinao GOI, Kunitomo SUGIURA chiltz.sooma.76w@st.kyoto-u.ac.jp

ポスター I – 12

解析モデルでは、材料の引張破断までモデル化で きていない.そのため、Gathimba らが提案する粗さ パラメータと破断伸び性能の関係式(式(2.1)と式 (2.2))から腐食鋼管杭の各領域の破断伸び性能を算 定し、解析において生じているひずみと比較し、解 析モデルでの破断の有無を判定する.

$$\overline{\mu_f} = \frac{1}{1 + 3.7\zeta_{S_z}} \tag{2.1}$$

$$\overline{\mu_f} = \frac{1}{1 + 33\zeta_{S_a}} \tag{2.2}$$

ここで無次元化伸び性能 μ_f とは破断時の伸びを降伏時の伸びで除した伸び性能 μ_f を健全時の伸び性能で除すことで無次元化した値である.

3. 腐食鋼管の曲げ解析結果

No.1 飛沫帯のモーメントー回転変位関係およ び最大荷重から 10%減少した時点での Mises 応力 分布を図 3 に示す.比較のため試験体全体の平均 板厚 t_{ave} ,有効板厚 t_{R1} と t_{R2} ,および健全板厚 9mm を 一様に与えたモデルの解析も行った.有効板厚 t_{R1} と t_{R2} は以下の式(3.1)と(3.2)より求めた.ここで t_{ave}^{*} は 最小断面平均板厚, s^* は板厚が最小となる断面にお ける周方向の標準偏差であり, t_{ave}^{**} は座屈波形幅 3 $\sqrt{Rt_{ave}}$ 区間平均板厚, s^{**} は座屈波形幅区間内の標 準偏差である.ここで R は板厚中心までの半径, t_{ave} は平均板厚である.

$$t_{R1} = t_{ave}^* - 0.6 \cdot s^* \tag{3.1}$$

$$t_{R2} = t_{ave}^{**} - 0.8 \cdot s^{**} \tag{3.2}$$

飛沫帯は残存板厚が大きい領域が圧縮側に来る場合 には曲げに対して抵抗しているが,残存板厚が小さ い領域が圧縮側に来る場合には同様に抵抗すること ができず,耐荷力が小さくなっていると考えられる. 周方向に板厚のばらつきが大きいケースでは変位を 与える方向により耐荷力に差が生じることがわかる.

図 3 No.1 飛沫帯の解析結果の一例

2.で示したように、解析において引張側に生じた

引張ひずみと粗さパラメータから予想される破断伸 び性能とを比較することで破断の可能性を調べた. いずれも算出した予想破断ひずみを下回っていたた め引張側で破断がモデル化されていない本研究の解 析モデルを用いた解析結果は妥当であると判断した.

変形性能の評価にあたり,最大荷重時から 5%低 下した 95%荷重,10%低下した 90%荷重に至るまで の回転変位を健全時のそれぞれの回転変位で除した 無次元化変形性能を定義した.座屈により鋼管に座 屈変形が生じている領域を,長さ方向は座屈波長 3√*Rtave*の 12%,周方向を半径の 60%の長さの長方 形領域とし,その領域における粗さパラメータを算 出した.変形性能との関係を図4に示す.粗さパラ メータが小さい領域では,無次元化粗さパラメータ と曲げ変形性能に相関はないが,無次元化粗さパラ メータが 0.05 以上では粗さパラメータが大きくな ると曲げ変形性能が小さくなる傾向が見て取れる.

図4 座屈箇所粗さと変形性能の関係

4. まとめ

本論文では曲げを受ける腐食鋼管杭の非線形有限 要素解析を行うことにより曲げ変形性能を求め,座 屈が生じた領域の粗さパラメータを算出することで 腐食による粗さと曲げ変形性能の関係を検討した. その結果,無次元化粗さパラメータが大きい領域で は,粗さと曲げ変形性能には負の相関があることを 明らかにした.

参考文献

[1] 藤井堅, 近藤恒樹, 田村功, 渡邊英一, 伊藤義 人, 杉浦邦征, 野上邦栄, 永田和壽:海洋環境に おいて腐食した円形鋼管の残存圧縮耐力, 土木学 会, Vol.52A, pp.721-730, 2006.

[2] Gathimba, N., Kitane, Y., Yoshida, T., and Itoh, Y. (2019): Surface roughness characteristics of corroded steel pipe piles exposed to the marineenvironment, *Construction and Building Materials*, Vol. 203, pp. 267-281.