第亚部門

関西大学大学院理工学研究科 学生員 〇上野 友彰 関西大学大学院理工学研究科 正会員 飛田 哲男 鳥取大学大学院 正会員 小野 祐輔

1. はじめに

地震による火山灰質粘性土をすべり面とする地す べりは世界各地で発生しており,日本では2011年東北 地方太平洋沖地震や2016年熊本地震で発生したことが 報告されている^{例えば1)}.しかし,火山灰質粘性土による 地すべりが発生しやすいのは緩傾斜地であり,そのため 土砂災害警戒区域外となっているのが現状である.

地盤の変形問題に対する数値解析手法として有限要 素法などが挙げられるが、これらの解析手法は地すべり のように極めて大きな変形を伴う場合には、メッシュが 歪み、解析精度が低下する.一方、粒子法(Smoothed Particle Hydrodynamics: SPH)²⁾は、流体解析などに用い られるメッシュフリー法であり、近年では地盤工学分野 にも応用が進められている^{例えば3,4)}.

本研究では、2011 年東北地方太平洋沖地震(Mw 9.0, 震源深さ = 24 km)の際,福島県白河市葉ノ木平で発生 した地すべりに対し SPH 法の適用性を検討する.

2. 解析方法

(1) SPH 法の基本式³⁾

SPH法はラグランジュ的手法の1つであり,連続体を 有限個の粒子にして分割し,粒子間の相互関係を数値的 に解く手法である.この際,粒子間の相互関係を評価す る 挙 動 を さ せ る た め に , 平 滑 化 近 似 (Kernel approximation) と粒子近似 (Particle approximation)の二 種類の近似計算を行う.平滑化近似は次式で与えられる.

$$f(x) = \int_{\Omega} f\left(x^{'}\right) \cdot W\left(x - x^{'}, h\right) dx^{'} \qquad (1)$$

ここで、Wはカーネル関数と呼ばれる重み関数であり、 xは座標値を示す.hは平滑化距離と呼ばれ、粒子間の相 互作用を特徴づけるパラメータである.式(1)の積分を 次式のように粒子近似と呼ばれる手法で離散化する.

$$f(x_i) = \sum_{j=1}^{N} \frac{m_j}{\rho_j} f(x_j) \cdot \nabla_i W_{ij}$$
(2)

Tomoaki UENO, Tetsuo TOBITA, and Yusuke Ono k621711@kansai-u.ac.jp

ここで

$$\nabla_{i}W_{ij} = \frac{x_{i} - x_{j}}{r_{ij}}\frac{\partial W_{ij}}{\partial r_{ij}} = \frac{x_{ij}}{r_{ij}}\frac{\partial W_{ij}}{\partial r_{ij}}$$
(3)

である.離散化された点 xi をSPH粒子と呼ぶ.式(2)の m_j, ρ_jはそれぞれ粒子jの持つ質量と密度である.SPH法ではある1つの粒子に着目した場合,この粒子を中心とした半径hの円を描き,円内にある粒子の持つ物理量を,カーネル関数Wを重みとした重み付き平均として求める.

(2) 運動方程式の離散化³⁾

連続体の運動方程式は、次式で与えられる.

$$\frac{dv^{\alpha}}{dt} = \frac{1}{\rho} \frac{\sigma^{\alpha\beta}}{x^{\beta}} + b^{\alpha}$$
(4)

ここで、vは速度、tは時間、 σ は応力、bは物体力、添 字 α および β は座標軸を表す.式(4)を SPH 法によっ て離散化することによって、次式を得る.

$$\frac{dv_i^{\alpha}}{dt} = \sum_{j=1}^{N} m_j \left\{ \frac{\sigma_i^{\alpha\beta}}{\left(\rho_i\right)^2} + \frac{\sigma_j^{\alpha\beta}}{\left(\rho_j\right)^2} \right\} \frac{\partial W_{ij}}{\partial x_j^{\beta}} + b_i^{\alpha} \quad (5)$$

ここで、 $W_{ij} = W(x_i - x_j, h)$ である.

3. 地すべり問題に対する SPH 法の適用性

(1) 葉ノ木平の地すべり

東北地方太平洋沖地震で発生した福島県白河市葉ノ 木平の地すべりは,高速で土砂が移動したことが知られ ており,この地すべりで 10 家屋 13 名の犠牲が出てい る.地質は,古土壌,スコリア,軽石,風化火山灰であ る.主な移動土塊は約 190 m 移動した後,向いの山に衝 突して停止していることが確認されている⁵.住民の証 言により地すべり時にブラストが発生したことが確認 されている.

(2) 解析モデル

地すべり発生箇所に着目した解析を行った.解析対象 地域の標高データは、以下の手順で取得した.まず、国 土地理院基盤情報データベース^のから数値地図 5m メッ シュ(標高)より、2002年の数値地図データを得た.次 に、「基盤地図情報ビューア FGDV⁷」を用いて解析対象 地域の座標を取得し地形を作成した.基盤粒子と流動粒 子を各3層に配置した.なお、本検討では、流動粒子は 解析対象範囲を覆う全領域に配置した.材料パラメータ

(表-1)は、実験値⁸⁾を参考にした.本解析で設定した
 SPH 法の基本パラメータを表-2 に示す.

表-1	解析時の物性値およびパラン	メータ
-----	---------------	-----

	密度 g/cm³	ヤング率 MN/m ²	ポアソン比	粘着力 kN/m²	内部摩擦角 deg.	粘性係数 Pa・s
流動粒子	2.67	0.0539	0.499	20	14.8	0.001
基盤粒子 壁粒子	4.88	1000	0.499	750	20	0.001

表-2 本研究で設定した SPH 法の基本パラメータ

	流動粒子	58926個		
粒子数	基盤粒子	67716個		
	壁粒子	18179個		
粒	子間隔	1. Om		
影	響半径	1.3m		
積分開	時間間隔	0.001秒		
解析ス	テップ数	3.0×10^5 step		
継約	売時間T	300秒		

(3) 地震動解析

図-1 に示す地震動 % かえた場合の流動変位図を図-2 に示す. 黄色範囲内が実際に地すべり発生した箇所で ある. 最大変位は 13m であり, 過小評価されているも のの, 地すべり地形が抽出できていることがわかる. ま た傾斜面に沿って粒子が移動していくことが見られた.

図-1入力地震動(K-Net 観測地点 FKS016 白河市敦内)⁹

図-2 地震動解析による流動変位量(600s)

4. まとめ

福島県白河市葉ノ木平の地すべりに対し,実験値から 得られた地盤パラメータを用いて SPH 法を適用したと ころ,傾斜に沿って地すべりが発生し,実現象とほぼ同 じ範囲で地盤流動が再現された.しかし,流動距離は 13m と過小評価となった.

謝辞

本論文で用いた観測記録は防災科学技術研究所およ び気象庁が観測・収集したものを配布いただいたもので す。記して感謝の意を表します。

参考文献

- Chigira, M. and Suzuki, T.: Prediction of earthquake-induced landslides of pyroclastic fall deposits, Journal of natural disaster science, Vol.4, No2, pp.1-32, 2016.
- Liu, G. R. and Liu, M. B.: Smoothed Particle Hydrodynamics -A Meshfree Particle Method, World Scientific Publishing, pp.35-44, 2003.
- 小野祐輔: 地震時の進行型斜面崩壊を対象とした SPH 解析, 土木 学会論文集 A1 (構造・地震工学), Vol.75, No.4 (地震工学論文集第 38 巻), pp. I_770-I_777, 2019.
- 野々山栄人:地盤工学分野における SPH 法の適用,砂防学会誌, 68(1), pp.68-71, 2015.
- 5) Wang G., Suemine, A., Zhang, F, Hata, Y., Fukuoka, H. and Kamai, T.: Some fluidized landslides triggered by the 2011 Tohoku Earthquake (Mw 9.0), Japan. Geomorphology, Vol. 208, http://dx.doi.org/10.1016/j.geomorph.2013.11.009, pp. 11-21, 2014.
- 国土地理院,基盤情報ダウンロードサービス, https://fgd.gsi.go.jp/download/menu.php (閲覧日: 2022.2.25).
- 7) 国土地理院,基盤地図情報ビューア FDGV, https://fgd.gsi.go.jp/otherdata/tool/fgdv_manual.pdf (閲覧日: 2022.2.25).
- Kawahara, T., Ueda, K., Iai, S., Chigira, M., and Tobita, T. (2016.6).
 "Numerical analysis of landslides of pyroclastic fall deposit." 1st International Conference on Natural Hazards & Infrastructure, ICONHIC2016, Chania, Greece.
- 防災科学技術研究所, K-NET, KiK-net. https://doi.org/10.17598/nied.0004 (2019).