第亚部門

深層学習による NATM トンネルにおける切羽面の岩盤不連続面に関する定量的評価法

関西大学大学院	学生員	○中田真成
関西大学大学院	学生員	榎並大希
関西大学環境都市工学部	正会員	尹 禮分
関西大学環境都市工学部	フェロー	楠見晴重

1. はじめに

NATM 工法では,岩盤評価項目を点数化して,支 保パターンを決定しているが,点数化には,複数の技 術者が行っている.昨今,トンネル技術者の不足に伴 い ICT 技術を活用した客観性の高い岩盤評価の重要 性が高まっている.

本研究では、NATM トンネルの切羽面の岩盤亀裂 評価に深層学習の導入を試みた.具体的には、切羽の 写真を AI に学習させて、岩盤亀裂の定量的評価につ いて検討した.

2. 研究概要

本研究では, **表**.1 の国土交通省による評価区分判 定の目安のうち, 赤枠部分である, (E)割れ目の頻度, (F)割れ目の状態, (G)割れ目の形態の3項目につい て, 畳込み式ニューラルネットワーク(CNN)を用いて 画像判定を試みた. **表**.2 に割れ目の3項目を示す.

表.1の国土交通省による評価区分判定の目安は, 地山等級判定の結果を点数化する時に用いる¹⁾.

(A)	切羽の 状態	1.安定	2.鏡面から岩魂が 抜け落ちる	3.鏡面の押し出しを 生じる	4.鏡面は自立せず崩れ、 あるいは流出	
(B)	素掘面の 状態	1.自立(普請不要)	2.時間がたつと緩み 肌落ちする(後普請)	3.自立困難掘削後 早期に支保する(先普請)	4.掘削に先行して 山を受けておく必要がある	
(C)	圧縮強度	1.σc≧100MP ハンマー打撃はね返る	2.100MPa>σc≧20MPa ハンマー打撃で砕ける	3.20MPa>σc≧5MPa 軽い打撃で砕ける	4.5MPa≧ σc ハンマー刃先食いこむ	
(D)	風化変質	1.なし・健全	2.岩目に沿って変色、 強度やや低下	3.全体に変色、 強度相当に低下	4.土砂状、粘土状、破砕、 当初より未固結	
(E)	割れ目の 頻度	1.間隔d≧1m 割れ目なし	2.1m>d≧20cm	3.20cm>d≧5cm	4.5cm≧d 破砕 当初より未固結	
(F)	割れ目の 状態	1.密着	2.部分的に開口	3.開口	4.粘土を挟む、 当初より未固結	
(G)	割れ目の 形態	1.ランダム方形	2.柱状	3.層状、片状、板状	4.土砂状、細片状、 当初より未固結	
(H)	湧水	1.なし・滲水程度	2.滴水程度	3.集中湧水	4.全面湧水	
(I)	水による 劣化	1. な し	2.緩みを生ず			

表.1 国土交通省による評価区分判定の目安¹⁾

3. **CNN(Convolutional Neural Network)**²⁾

CNN (Convolutional Neural Network)とは深層学習の 一種であり、人間の脳の視覚野に似た構造の畳み込 み層を使って特徴抽出を行うニューラルネットワー クのことである.主に画像認識の分野で使用されて おり,畳み込み,プーリング処理を行うことで画像デ ータの特徴を残したまま,データの縮小ができるこ とが長所として挙げられる.

本研究では CNN の実行に Python(パイソン)を使用 する.

4. 使用した解析モデルおよび手法と切羽画像

(1) 使用した解析モデル

2 種類の解析モデルを使用した.1つ目は,繰り返 し部である畳込み層が4層,プーリング層が3層, ニューラルネットワーク層が3層である独自の解析 モデルである.

2つ目は, 畳込み層 13 層, プーリング層が 5 層, ニューラルネットワーク層が 3 層から構成されてい る, VGG16 モデルである.両方のモデルを対象とし て,トンネル切羽画像から, 岩盤亀裂評価を行った.

(2) 使用した切羽画像データ

使用した岩盤切羽の写真データは,堆積岩と火成 岩により構成される,2019年度における和歌山県, 福井県のトンネルで,ピクセル数2000*4800の切羽 画像を使用した.**表.2**は,(E),(F),(G)における解析 対象とした画像枚数を示している.本研究において は,1枚の切羽画像を図.1のように,天端部14,左 肩10,右肩10の合計34分割に分割した.分割に際 しては,岩盤のみ写っている画像を対象とした.

表.2 2019 年度における画像枚数(分割後)

	1点	2点	3点	4点	合計
E	17	821	1378	91	2307
F	274	1441	488	104	2307
G	511	342	1376	78	2307

Masanari Nakata Taiki Enami Yeboon Yun Harushige Kusumi k063449@kansai-u.ac.jp

図.1 切羽画像分割方法

5. 解析

最初に、モデル別での比較を行う. 4.(1)で述べた, 独自モデルと VGG16 モデルでの精度と検証時間を 比較する. 層の多いモデルで 2019 年度における画像 を検証すると、ソフトウェアとして利用している Python の計算限界を超えて機能不全の現象が見られ ることから、表.2 とは異なる、画像枚数が少ない画 像を使用した.

結果として,精度に大きな差はなかったが,表.3 に 示す通り,解析時間が独自モデルの方が極端に短い ことから,作業効率の面を考慮し,今回は独自モデル を使用する.

解析時間			
評価項目	独自モデル	VGG16モデル	
E(割れ目の頻度)	31分13秒	7時間35分28秒	
F(割れ目の状態)	28分57秒	7時間31分47秒	
G(割れ目の形態)	17分33秒	5時間45分27秒	

表.3 解析時間の比較

次に,独自モデルを用いて,**表.2**に示した 2019 年 度における画像を解析した.**図.2**に解析結果を示す. E,F,G すべての項目で良い精度が出なかった.

6. 深層学習による岩盤不連続面評価の精度向上

精度の向上を図るため,精度向上案を2種類提案 する.1つ目の精度向上案を深層学習による岩盤不連 続面評価Aとし,2つ目の精度向上案を深層学習に

よる岩盤不連続面評価Bとする.図.3はAに関する 手法を示している. この図より, 評価点が1点の画 像の場合, 独自モデルと分割してそれぞれ評価点を 附与した画像を利用して解析し,評価点が1点と再 度判定された場合は,画像の評価点を変更せず,評価 点がその他の 2-4 点で判定された場合は、判定され た点数を適用するといった方法で表.2 の評価点を修 正する. 図.4 は、B に関する手法を示している. 400*400 ピクセルに分割して行った検証を 800*1600 ピクセルに分割した場合と,800*800 ピクセルに分割 した場合の2パターンの検証を行う.解析結果を表.4 に示す. A では, 3 項目すべてで精度が 90 %を超え たので,精度向上に適していると言える.Bでは、ど ちらの分割方法も精度は大きく向上しなかった. ま た、分割方法を大きくすると画像枚数が減るという 問題点もあるので、精度向上には適しているとは言 えない結果になった.この結果から,画像枚数が多い にも関わらず、表.2の画像の精度が低かった理由は、 切羽評価点の設定方法に問題があったということが 分かった.

図.4 岩盤不連続面評価 B (800*1600)

表.4 岩盤不連続面評価の精度向上の解析結果

	岩盤不連続面評価A		岩盤不連続面評価B (800*1600)		岩盤不連続面評価B (800*800)	
評価項目	精度の結果(%)	精度差(%)	精度の結果(%)	精度差(%)	精度の結果(%)	精度差(%)
(E)割れ目の 状態	94.2	+29.7	62.4	-2.1	67.6	+3.1
(F)割れ目の 状態	97.5	+34.1	60.5	-2.9	61.5	-1.9
(G)割れ目の 形態	96.5	+34.4	68.8	+6.7	62.8	+0.7

7. 参考文献

1) 近畿地方整備局道路部道路工事課,トンネル地山 等級判定マニュアル(試行案),2016.

2)武井宏将,初めてのディープラーニング,リックテ レコム, p25~p29, 2016.