第 II 部門 高次 ISPH 法を用いた Multi-Resolution 計算に関する研究

1. はじめに

流体解析における Multi-Resolution (MR)モデルの開 発は計算の効率化に大きく寄与するが,粒子法では未 だその研究は十分に進んでいない.既往の解像度可変 型粒子法 (例えば田中ら¹⁾)は,安定性や圧力場のノイ ズが課題である.そこで本研究では粒子法の一種であ る ISPH 法の MR 計算への展開を試みる.計算過程で 影響域を固定・変動させる取り扱いを組み合わせ,高 次微分演算子モデルを併せて導入することで,計算負 荷を抑えた高精度な MR モデルの開発を実施した.

2. 解析手法

本研究で用いた Taylor 級数適合型の高次 ISPH 法²⁾ では,1階及び2階の偏導関数は以下の式で評価する.

$$\langle \boldsymbol{q}\phi \rangle_{i} = \left(\sum_{j} \boldsymbol{p}_{ij} \otimes \boldsymbol{p}_{ij} V_{j} \frac{\partial w_{ij}}{\partial r_{ij}}\right)^{-1} \sum_{j} \boldsymbol{p}_{ij} \phi_{ij} V_{j} \frac{\partial w_{ij}}{\partial r_{ij}} \quad (1)$$

粒子法における MR モデルでは影響半径を全粒子で 固定,あるいは該当・近傍粒子ペア間で平均し変動さ せる取り扱いが主流である.本研究では固定・変動を 組み合わせた MR モデルを提案する.以下に各 MR モ デルでの微分演算子離散化時の影響域の扱いについて 詳述する.

·影響域固定型 3)

 $h_{ij} = h_{\text{large}}$ (h_{large} :計算領域内最大粒径粒子の smoothing length)として計算する.(最大粒径粒子の影 響域を全粒子に適用する.)

·影響域変動型2)

 $h_{ij} = \frac{h_i + h_j}{2}$ として計算する. (影響域を2粒子間で平均する.)

京都大学工学部 学生員 辻本真司 京都大学工学研究科 正会員 清水 裕真 京都大学工学研究科 正会員 Khayyer Abbas 京都大学工学研究科 正会員 後藤 仁志

・影響域固定・変動混合型(提案モデル)

密度の計算, Particle Shifting (PS) 法の計算および PPE のソース項 (HS) の計算には影響半径固定型を適用し, $h_{ij} = h_{\text{large}}$ として計算する.一方で, PPE の Laplacian と圧力勾配項の計算には影響域変動型を用いて, $h_{ij} = \frac{h_i + h_j}{2}$ として計算する.

3. 数値シミュレーション結果

3.1. 離散化誤差に関するベンチマーク

(1)概要

1m四方の計算空間に、二階微分可能な関数⁴⁾、

$$G(x,y) = -(x^{3} + y^{3}) + \exp\left[-\left(\frac{x-b}{a}\right)^{2} - \left(\frac{y-b}{a}\right)^{2}\right]$$
(2)

を与え、計算空間を 2 種類の大きさ($d_{large} = 0.01m$, $d_{small} = 0.005m$)の粒子にて離散化する. 粒子法の既往 の 0 次モデル・高次微分演算モデル (式 1) による離散 化結果を理論解と比較した.

(2)結果

図-1 に固定型での∇_xGの結果を示す.0 次モデルで は,両モデル共に極付近で数値解に誤差が生じている. 一方,高次モデルでは両モデル共に優れた計算精度を 示していることが確認できる.

図-2 に変動型の∇²Gの結果を示す.0 次モデルは位 置に関わらず大きくノイズが生じているが,高次モデ ルは優れた計算精度を示すことが確認できる.

3.2. Taylor Green vortex

(1)概要

計算領域は[1m×1m]であり、境界端には水平・鉛直 方向ともに周期境界条件を課す.本研究では高 Reylolds 数のケースRe = 10⁶を対象に計算を実施する.

Shinji Tsujimoto, Yuma SHIMIZU, Abbas KHAYYER and Hitoshi GOTOH tsujimoto.shinji.22a@st.kyoto-u.ac.jp

図-3 Taylor-Green 流れの圧力分布

影響域固定・変動混合型

図-4 Taylor-Green 流れの圧力分布

(2)結果

図-3に示されるように,影響域固定型では時刻 =1.0s において滑らかな圧力分布が得られている.一方,影 響域変動型では圧力分布が乱れている.図-4 は影響域 固定・変動混合型の時刻 t=1.0s と t=2.0sの圧力分布 図である.時刻に関わらず,滑らかな圧力分布が得ら れ、ノイズが解消されていることが確認できる.

表-1 計算時間

平均時間	影響域固定型	影響域固定・
		変動混合型
1ステップ時間	6.27s	3.82s
予想計算	0.830s	0.625s
修正計算	3.91s	1.82s
再配列(PS法)	1.34s	1.20s
結果出力	0.158s	0.162s
総時間	$1.68 \times 10^4 s$	$1.02 \times 10^4 s$

表-1 は計算の各段階の平均時間の比較である.総時 間は,影響域固定型に比べ約 60%に抑えられている. 特に修正計算で,約 46%に削減されている. PPE の Laplacian の計算に平均した影響半径を用いることで近 傍粒子数を減らすことができており,行列の要素数の 削減が飛躍的な計算効率向上に繋がったと考えられる.

4. おわりに

本稿では提案した固定・変動を組み合わせた混合型 MR モデルを,流体計算に適用した.得られた数値結 果から,混合モデルは高い安定性・精度を維持しつつ 計算を大幅に高速化できることが示され,モデルの潜 在的可能性は十分に示されたと言える.

参考文献

- 田中 正幸, 益永 孝之, 中川 泰忠: 解像度可変 型MPS法, *Transactions of JSCES* Paper, No.20090001, 2009.
- 2) 後藤仁志:粒子法 連続体・混相流・粒状体のための 計算科学,森北出版, 2018.
- A. Khayyer, Y. Shimizu , H. Gotoh , S. Hattori : Multiresolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering, *Ocean Engineering*, Vol.226, pp.108-652, 2021.
- 4) 玉井佑, 柴田和也, 越塚誠一: Taylor展開を用いた高 次精度MPS法の開発, 日本計算工学会論文集, No.20130003.