第V部門

3門 漏洩磁束法による横締め PC 鋼材の破断の検出手法の検討

大阪大学工学部	学生員	○橋本	智也
大阪大学大学院工学研究科	学生員	樫山	直生
大阪大学大学院工学研究科	学生員	四之當	F 彰吾
大阪大学大学院工学研究科	正会員	寺澤	広基
大阪大学大学院工学研究科	正会員	鎌田	敏郎

1. はじめに

PC 桁の横締め PC 鋼材の定着具近くに,ダ イヤフラム部分のコンクリートを打設する際 に使用する打設孔がある.そこから水が浸入 した影響によるダイヤフラムの変状(図-1)の 事例や,定着具・PC 鋼材が腐食・破断してい る事例が報告されている.そこで,PC 鋼材の 破断を検出する手法の確立が求められている.

コンクリート構造物中の鉄筋破断の非破壊 検査手法の一つに,鋼材が強磁性体,コンクリ ートが非磁性体であることを利用した漏洩磁 束法がある.既往の研究では,破断が想定され る箇所を跨ぐように着磁を行い,破断を検知 する研究が進められている.しかし,実際の構 造物では破断箇所のかぶりが厚いために着磁 できない場合がある.例えば,本研究の対象で ある横締め PC ケーブルも橋の構造上,破断想 定箇所を跨ぐような着磁が不可能である.

そこで本研究では,破断箇所を着磁できない場合を想定した PC 鋼材の破断検出を行う手法の検討を目的とした.

2. 実験概要

2.1 供試体および計測概要

本実験では、破断を検出する際に影響する 要因について検討を行った.実験台は、非磁性 体の材料として木製の角材、真鍮製の釘を使 用して作製した.鋼材は PC 鋼棒 φ23 長さ 2000mmを使用し、着磁及び測定の際のかぶり は150mm とした.(図-2)

図-2 実験手順

図-3 実験結果(着磁位置の影響)

Tomoya HASHIMOTO, Naoki KASHIYAMA, Shogo SHINOMIYA, Koki TERASAWA, Toshiro KAMADA

t.hashimoto@civil.eng.osaka-u.ac.jp

2.2 検討要因

影響する要因として,着磁位置・短鋼棒・シ ース・定着具を考慮した.また,最後に健全性 の評価指標について検討を行った.

3. 実験結果および考察

3.1 着磁位置が帯磁状況に与える影響

測定結果を図-3 に示す. 着磁開始位置から 鋼棒端部までの長さが 150mm 以上あれば,帯 磁状況の変化が小さいことがわかった.

3.2 短鋼棒が帯磁状況に与える影響

短鋼棒が帯磁状況に与える影響について検 討を行った.結果を図-4 に示す.短鋼棒が無 いと,最小磁東密度が若干大きくなることが わかった.

3.4 シースが帯磁状況に与える影響

シースが帯磁状況に与える影響について図-5 に示す.シースがあると磁気が遮蔽され,帯 磁量が若干小さくなることがわかった.

3.5 定着具が帯磁状況に与える影響

定着具の影響についての結果を図-6 に示す. 定着具があると健全の場合に最大磁束密度と 最大ピーク位置に大きな変化が生じることが わかった.これは健全の場合に定着具が鋼棒 に接触しており,定着具と鋼棒が一体となっ たことが影響したと考えられる.

3.6 評価指標の検討

現場での破断検出手法の有効性を確かめる ため、シースと定着具(ナット・アンカープレ ート)を付けて、検討を行った.その結果を図 -7 に示す.また、そこから得られた最小磁束 密度と PC 鋼棒のみでの最小磁束密度を表し たものを図-8 に示す.これより、健全と破断 の最小磁束密度を評価することで破断を検出 できる可能性が示された.また、シースと定着 具の存在が、健全と破断の最小磁束密度の差 を増加させたことから、それらが破断検出に 良い影響を与える可能性が示唆された.

7. 結論

健全と破断の磁束密度のグラフの形状や最 小磁束密度を評価することで,PC 鋼棒の破 断を検出できる可能性が示唆された.

図-5 シースの影響

