第I部門

1. 研究の背景と目的

ニールセンローゼ橋はケーブル構造物の一つであり、2 本または2本以上のケーブルが交点クランプで連結され ている.施工及び維持管理する上でケーブルの張力が設 定張力を満足しているか確認する必要があり、現在は交 点クランプを取り外し、高次振動法¹⁾等を各ケーブルに適 用することで張力を推定している.しかし、交点クラン プの取り外し・取り付けに多くの労力や時間がかかる. そこで山田らは交点クランプを取り付けたまま張力を推 定する手法²⁾を提案したが、ケーブルの両端を単純支持と 仮定しているため、固定端であると考えられる模型実験 では精度良く張力を推定することができなかった.そこ でケーブルの両端が回転ばねであるとして定式化し、山 田らの手法よりも推定精度を向上させることを本研究の 目的とする.

2. 張力推定手法の提案

まず単一ケーブルの張力推定手法である高次振動法に ついて説明する.加速度センサを設置したケーブルを加 振し,得られた加速度波形をフーリエ変換することで固 有振動数 fiを求めることができる.ケーブルの密度p,断 面積 A,長さ L とモード次数 i の固有振動数 fiを式(1)に代 入すると,未知数である張力 T と曲げ剛性 EI に関する式 が次数の数だけ立式でき,それらに最小二乗法を適用し て張力を推定することができる.

$$f_i^2 = \frac{\pi^2 E I}{4\rho A L^4} i^4 + \frac{T}{4\rho A L^2} i^2 \tag{1}$$

Kensho KOZURU, Aiko FURUKAWA and Minoru SUZUKI kozuru.kensho.48n@st.kyoto-u.ac.jp

京都大学工学部地球工学科	学生員	○高鶴	憲正
京都大学大学院工学研究科	正会員	古川	愛子
神鋼鋼線工業(株)	非会員	鈴木	実

本研究では図1に示すような、交点クランプを有し両 端が回転ばねである2ケーブルモデルを対象とした新た な張力推定式を考える。ケーブルを張力のかかったはり とみなすと、面外方向たわみの振動方程式は式(2)で表せ る.2ケーブルが交点クランプにより1点で結合された状 態、かつ両端回転ばねの境界条件のもと式(2)を解くと式 (3)が得られる。式(3)は山田らの手法に回転ばねを考慮し たものであり、交点変位で除して正規化したため交点変 位が0となる場合に成立しないことが判明した。そこで 交点変位が0となる場合を考慮するため交点変位に相当 する項を式(3)にかけると式(4)が得られる。

$$EI\frac{\partial^4 y}{\partial x^4} + \rho A\frac{\partial^2 y}{\partial t^2} - T\frac{\partial^2 y}{\partial x^2} = 0$$
(2)

$$\frac{E_1I_1}{E_2I_2} \cdot fun1^i + fun2^i = 0 \tag{3}$$

$$\left(\frac{E_1I_1}{E_2I_2} \cdot fun1^i + fun2^i\right) \cdot fun3^i \cdot fun4^i = 0 \tag{4}$$

ここに、 $funN^{i}(N=1,2,3,4)$ は i 次固有振動数と各ケーブル の張力、曲げ剛性 $(E_{1}I_{1}, E_{2}I_{2})$ 、回転剛性、密度、断面 積、長さを含む関数であり、下付き文字はケーブル番号 を示す.密度、断面積、長さと面外方向の固有振動数を 式(4)に代入した時に左辺が 0 になるという制約条件を用 いて 2 本のケーブルの張力 T_{1} , T_{2} を推定する. 副次的に、 2 本のケーブルの曲げ剛性と回転剛性も推定される.式(4) は高次振動法の式(1)と異なり、固有振動数の次数を特定 する必要がないという利点がある.

3. 模型実験による検証

提案式の妥当性を検証するために、山田らの模型実験 結果を用いて張力の推定を行った.実験装置の概要は図2 に、推定に用いたケーブル諸元を表1に示す.推定には9 個の固有振動数を用いた.推定結果を表2に示す.ロー ドセルで測定した張力を真値とした.上段が本研究で提 案した両端回転ばね式(4)を用いた推定結果、下段が山田 らの両端単純支持式を用いた推定結果である.

2021年度土木学会関西支部年次学術講演会

表1 ケーブルの構造諸元

ケー	密度	断面積	長さ	左側支点から
ブル	$ ho_k$	A_k	L_k	クランプまでの
k	[kg/m ³]	[m ²]	[m]	長さ <i>L</i> _{k1} [m]
1	8401.578	0.000532	7.835	3.995
2	8401.578	0.000532	7.836	3.951

表 2 張力推定結果

用いた式	真値		張力 (推定値/真値)		
	$T_1[kN]$	T ₂ [kN]	Ti[kN]	T2[kN]	
両端 回転ばね	103.6	150.4	100.0 (0.965)	154.4 (1.027)	
両端 単純支持			142.5 (1.376)	142.0 (0.944)	

提案手法は山田らの手法と比べて張力の推定精度が高 く、ケーブル 1、2 共に誤差 5%以内の精度で推定できて いる.これは、提案手法がケーブル両端の境界条件と交 点での変位が 0 となるモードを考慮できているからであ ると考えられる.

4. 実橋実験による検証

提案式の妥当性を検証するために実橋実験を行った.2 本のケーブルが交差する4ケースに対して実験を行った. 推定に用いたケーブルの密度と断面積を表3に、ケーブ ル長と張力を表 4 に示す. 交点クランプを取り外し, 回 転剛性を考慮した高次振動法により推定した張力を真値 と見なした.ここでは、得られた12次までの固有振動数 のうち主要な1次モードを含む6個(1次モードと, 2~12 次モードから 5 つ)を用いて全ての組合せで推定した (11C5 = 462通り). 推定に用いる固有振動数の数を増や すほど計測ノイズなどの影響が大きくなり推定精度が下 がることが確認できたため、ここでは固有振動数を 6 個 用いた. 例としてケース No.1 の張力の推定結果を図3に 示す. ほとんどの固有振動数の組合せで誤差 20%以内の 精度で推定されているが、一部の組合せでは精度が悪く なっている.他のケースでも同様の傾向が見られた.そ こで、大きく外れた値を除くために上下5%のデータを除 去して残りの90%のデータを平均したものを図4に示す. 全てのケースについて誤差 10%以内の精度で張力を推定 できていることが分かる.

表3 ケーブルの密度と断面積(すべてのケーブルで共通)

密度p[kg/m³]	断面積A[m²]		
9374	0.0018755		

表4 ケーブル長さと張力の真値 (No.4 の T_2 は未計測)

ケース No.	$L_1[m]$	$L_{11}[m]$	$L_2[m]$	$L_{21}[m]$	$T_1[kN]$	$T_2[kN]$
1	14.550	11.163	13.579	11.163	448.76	489.67
2	18.297	11.163	16.775	11.163	377.95	383.73
3	21.120	11.163	20.658	11.163	398.33	391.45
4	20.658	11.163	21.120	11.163	421.03	

図4 張力推定結果(平均)

5. 結論

ニールセンローゼ橋のように交点クランプが設置され ている 2 本のケーブルの張力推定手法を改良した. 改良 点は,ケーブル両端を回転ばねであるとしたことと,交 点での変位が 0 となるモードを考慮したことである. 模 型実験では,山田らの手法よりも高い精度で張力を推定 できた.実橋実験では,全てのケースで誤差 10%以内の 精度で張力を推定することができた.

参考文献

- 山極伊知郎,宇津野秀夫,遠藤浩司,杉井謙一:高次の固有振動数を利用した線材の張力と曲げ剛性の同定法,日本機械学会論文集(C編),66巻,649号,2000年9月
- 2) 山田哲,古川愛子,小林亮介:固有振動数を利用した 交点クランプを有するケーブルの張力推定手法の開 発,第75回土木学会年次学術講演会,CS10-40,2020 年9月