第Ⅴ部門

超音波トモグラフィー計測と X 線 CT 撮影による ASR を生じたコンクリートの 健全度評価

大阪工業大学大学院工学研究科	学生員	〇大林	俊介
近畿大学理工学部	学生員	山本	康輔
CORE 技術研究所	正会員	波多野	予 雄士
大阪工業大学工学部	正会員	三方	康弘
近畿大学理工学部	正会員	麓	隆行

1. はじめに

アルカリ骨材反応(以下 ASR)により劣化を生じたコ ンクリート構造物の健全度を評価する場合に、コンクリ ート表面のひび割れ幅やひび割れ密度および部材の断 面内の超音波伝播速度を指標として劣化状況を把握す るとともに、構造物からコアを採取して、 圧縮強度、静 弾性係数を把握している場合が多い. ASR により劣化 を生じたコンクリートは、コンクリート内部のひび割れ が圧縮強度,弾性係数,超音波伝播速度の低下に影響を 及ぼしていると考えられるが、ASR によるひび割れの 分布状況がコンクリートの物性に及ぼす影響について は知見が少なく解明できていない. そこで本研究では、 ASR 劣化を生じたコンクリート構造物の健全度評価手 法を検討するために,ASR 劣化を生じたコンクリートに 三次元超音波トモグラフィー計測や X 線 CT 撮影を実 施し,適用性を検討すること.さらに,超音波トモグラフ ィー計測によるコンクリート内部の劣化状況とX線CT 撮影によるコンクリート内部のひび割れ状況について 比較し,相関を検討することを目的とする.

2. 供試体概要

本研究では、プレストレス導入量の違いが ASR によ るひび割れの発生状況や超音波伝播速度に及ぼす影響 を把握することを目的として、プレストレス導入量の異 なる供試体を製作した.供試体は図-1 に示すような、 350×350×350mm の Cube 供試体とし、表-1 のようにプ レストレス導入量を設定した.また、超音波の発振子、 受振子を各面の中央部 150×150mm に配置した.

3. 超音波トモグラフィー計測

3.1 測定概要

発振子の起周波数は 28kHz で行い伝播速度は伝播距離と伝播時間の関係より算出した.図-2 のように 3 方向からの測定を行った.

3.2 計測結果

超音波トモグラフィー計測結果を図-3に示す.C-33で は軸方向向きにひび割れを制御できておりその結果,軸 方向の伝播速度は軸直角方向や上下方向の伝播速度と 比較して,大きい結果を示した.一方、C-00ではプレスト レスを導入によるひび割れ抑制効果が小さく,ひび割れ がランダムに発生しており上下方向の伝播速度はほか の方向と比較して遅くなるものの、C-33に比べて伝播 速度の違いは少なかった.以上のことから,プレストレス 導入量が大きい場合には,ひび割れの方向性が制御され ることから,超音波トモグラフィー計測においても伝播 速度に差が生じており,三次元トモグラフィー計測の有 用性を確認できた.

表-1 Cube 供試体のプレストレス導入量

Shunsuke OBAYASHI, Kousuke YAMAMOTO, Yusi HATANO, Yasuhiro MIKATA, Takayuki HUMOTO concrete_labolatory_oit@yahoo.co.jp

4. Cube 供試体の X 線 CT 撮影

4.1 計測概要

X線CT撮影に用いるコアはCube供試体のC-00,C-33 から各軸方向,軸直角方向,上下方向から図-4のように計 6体採取した.X線の放射条件は電圧220kV,電流100µA とした.1回の測定で直径62mm×高さ75mmの範囲を 撮影し,コンクリートコアを高さ方向に2,3回にわけて 撮影を実施した.撮影結果を用いて,ひび割れ密度を算 出した.

4.2 計測結果

C-33 の各コアの X 線 CT 撮影による断面内のひび割 れ長さおよびひび割れ密度の算出結果を表-2 に示す.上 下方向では,コンクリート表面から 100mm~200mm 位 置における5断面の平均ひび割れ密度は0.17mm/mm²で あったが,比較的表面に近い 100mm,130mm の測定箇所 は 170mm,200mm の測定箇所と比較して,ひび割れ密度 が大きくなった.軸方向では,平均ひび割れ密度は 0.17mm/mm²であったが,コンクリート表面から 130mm 位置における断面では,ひび割れ長さが 781mm,ひび割 れ密度が 0.26mm/mm²となった.このことから,ひび割れ 密度はコンクリート表面から離れるにしたがってわず かであるが,密度が低下している傾向を示した.

5. 超音波トモグラフィー計測結果と X 線 CT 撮影に よるコアコンクリートの評価

軸直角方向から採取したコアコンクリート表面部から 200mm 付近の断面における,ひび割れ図と超音波トモグ ラフィー計測の結果を重ねたものを図-5 に示す.超音波 トモグラフィー計測によって,任意の断面における超音 波伝播速度の違いを表現することができる.図-5 の①の 部分について,伝播速度は 2500~2600m/s であり,ひび割 れ密度は 0.21mm/mm² となった.一方,②の部分について 伝播速度は2700m/s であり,ひび割れ密度は 0.14mm/mm² となった.ひび割れ密度は任意の断面から抽出したもの であり伝播速度は受振子,発振子間の伝播時間から算出 したものであり,両社の同一断面で評価することは難し い面があるものの,ひび割れ密度と超音波伝播速度には 相関がある可能性が示された.

6. まとめ

・プレストレス導入量が大きい場合,ひび割れの方向性 が制御されることから,超音波トモグラフィー計測にお いても伝播速度に差が生じた.また,同一方向性において, ひび割れや空隙が多い箇所では,超音波伝播速度が低下 する挙動を示した.データのばらつきが大きいため,さら なる検証が必要であるが,三次元トモグラフィー計測の 有用性が確認できた.

7. 謝辞

本研究は JSPS 科研費 JP17K06522 の助成を受けたものです.ここに謝意を表します.

図-4 コア採取箇所

表-2 C-33 の各コアのひび割れ密度および長さ

供試体		コア面積 [mm ²]	ひび割れ長さ [mm]	ひび割れ密度 [mm/mm ²]	空隙面積 [mm ²]	空隙割合 [%]
C-33 [e→f] 上下方向 C-33 [b→d] 軸方向	100mm	3019.07	614.93	0.20	37.87	1.25
	130mm	3019.07	570.73	0.19	38.02	1.26
	150mm	3019.07	608.55	0.20	28.56	0.95
	170mm	3019.07	411.50	0.14	34.35	1.14
	200mm	3019.07	554.94	0.18	35.28	1.17
	100mm	3019.07	547.03	0.18	57.55	1.91
	130mm	3019.07	781.26	0.26	46.10	1.53
	150mm	3019.07	623.09	0.21	31.38	1.04
	170mm	3019.07	492.77	0.16	34.64	1.15
	200mm	3019.07	499.04	0.17	41.66	1.38
C-33 [c→a] 軸直角方向	100mm	3019.07	546.73	0.18	82.54	2.73
	130mm	3019.07	614.99	0.20	40.95	1.36
	150mm	3019.07	645.28	0.21	15.54	0.51
	170mm	3019.07	586.86	0.19	13.92	0.46
	200mm	3019.07	558.52	0.18	53.37	1.77

図-5 ひび割れ図とコンター図比較 (C-33 軸直角方向 表面から 200mm 付近) 表-3 図-5 断面のひび割れ密度

	面積(mm ²)	ひび割れ長さ (mm)	ひび割れ密度 (mm/mm ²)
1	1901.13	401.62	0.21
2	1117.79	156.86	0.14