第【部門 PC 箱桁における PC 鋼材破断による振動特性と耐荷特性の変化に関する実験的検討

木 厳	柞	正会員	京都大学大学院	光平	〇竹村	学生員	京都大学
哲佑	金	正会員	京都大学大学院	洋佑	近藤	学生員	京都大学大学院
英二	吉田	正会員	土木研究所				

1. 序論

我が国におけるプレストレストコンクリート橋(以下 PC橋)は、日本の全橋梁の約44%を占め、建設されてか ら50年経過しているものが多く存在するため、多くの劣 化事例が報告されている. 主な劣化として、 グラウト充 填不良から生じる PC 鋼材の損傷の劣化が挙げられる. このような橋梁に対する点検・修繕にかかわる意思決定 や、効率的な維持管理を支援する手法として、振動ヘル スモニタリングが注目されている. しかしながら, PC 橋 はプレストレス力を有するため損傷による曲げ剛性の変 化が現れにくく、その結果振動特性の変化も明確でない ことが予想される. そのために PC 橋を対象とする振動 モニタリング技術の有効性については検討が必要である.

本研究では、PC 鋼材破断とグラウト充填不良が生じた PC 箱桁において,損傷に対する PC 箱桁の応答特性を把 握することを目的とする. グラウト未充填と PC 鋼材の 破断を模擬した損傷を導入した PC 箱桁に対して, 室内 での4点曲げ実験,振動実験を実施し,損傷がPC箱桁の 耐荷特性や振動特性に及ぼす影響について検討する. ま た,耐荷特性と振動特性の相関関係について検討する.

2. 実験概要

0kN(G1)

0kN(G2)

1day

実験供試体は, 健全な PC 箱桁1体(G0)と, グラウト充 填不良を模擬した PC 箱桁 2 体(G1, G2)とする. Fig.1 に示 Tendon cut かよう Keok (G1 は Damage area 1 に, 損傷桁 G2 は Damage 980k (G2) 1320k (G2) att 2の蔵賞瓶にグラウト未充填を施した.4点曲げ 実験では,1台の3000kNの油圧ジャッキを用いて,載荷 梁を介して載荷を行った.載荷にあたり,変位はジャッ rddays lday

キストローク、荷重はロードセルにより監視し、荷重制 御でFig.2に示す載荷プロセスで載荷実験を実施した.PC 箱桁の耐荷特性を把握するため、変位計、ひずみゲージ から橋梁応答を計測した. G1 において, Tendon cut(1)で は Fig.1-(c)の左側 1, 2, 3 の PC 鋼材を, Tendon cut(2)では Fig.1-(c)の左側 4, 5, 6 の PC 鋼材を切断する. G2 におい ては, Tendon cut(1)では Fig.1-(c)の両側 1, 2, 3 の PC 鋼材 を, Tendon cut(2)では Fig.1-(c)の両側 4, 5, 6 の PC 鋼材を 切断する.なお、切断はグラウト未充填箇所とする.

また、載荷実験の各載荷状態における振動特性を把握 するために、各載荷ケース除荷後にインパクトハンマー

Kohei TAKEMURA, Yosuke KONDO, Gen HAYASHI, Chul-Woo KIM and Eiji YOSHIDA kim.chulwoo.5u@kyoto-u.ac.jp

による衝撃振動試験を行い,応答加速度を計測後,周波 数応答関数¹⁾を用いて固有振動数を同定した.

3. 曲げモーメントに対する応答特性の評価

各実験桁の支間中央における荷重-変位曲線を Fig.3 に示す. 健全桁 G0 では,載荷ステップを重ねても,前載 荷ステップの除荷点を次の載荷ステップが通過する. 一 方,損傷桁 G2 では,除荷点よりも低い荷重レベルを通過 している(G1 桁も同様). これは,G0 では PC 鋼材のプレ ストレス力を十分に保有しており,コンクリートにひび 割れが生じるような領域においても,十分な再帰性を有 するが,曲げ変形に対する剛性低下が少なく,G1,G2 で は,PC 鋼材切断によりプレストレス力が部分的に低下し, 残留する変形量がやや大きくなったものと考えられる.

次に、曲げモーメントに対する応答特性を評価するため、桁の消散エネルギーに着目する.本研究では、Fig.4 に示すように荷重-変位曲線から消散エネルギームW、 ポテンシャルエネルギーWを算出し、曲げモーメントに 対する応答特性を式(1)で定義する.

$$Z = \left(1 - \varsigma \frac{\Delta W}{W}\right) \cdot 100 \quad (\%) \tag{1}$$

$$\varsigma = 1 + \left(\frac{\varepsilon_{creep}}{\varepsilon_{lim}}\right) \tag{2}$$

なお,式(2)によりクリープひずみ *Ecreep* を考慮し(*Elim*=0.02),載荷前の曲げモーメントに対する応答特性(Z)を100%とし,Fig.5 に示す.なお Fig.5,6 において G0 と G1,G2 を同一グラフに載せる.

全ての桁で、曲げモーメントに対する応答特性は、損 傷が進展するにつれて減少する傾向にあるが、G1,G2の Load2,Load3においては、上昇していることがわかる.こ れは、載荷実験を2日間隔で実施したため、残存するPC 鋼材のプレストレス力による復元力が作用したと推測す る.この現象は、実PC橋においても確認している²⁾.

4. 振動実験における同定結果

Fig.6 より G0, G1 において損傷の進展につれて曲げ 2 次モードの振動数が減少傾向にあることがわかる.これ は,載荷による損傷が原因と考えられる.一方,G2 では, 健全時よりも載荷後の振動数の方が上昇するステップが ある.これは,計測したデータのみでは現象を解明でき ておらず,今後,解析を通して検討予定である.また, G1,G2 において,St.4,St.7 で振動数が上昇した.これ

は、曲げモーメントに対する応答特性と同様、残存する PC 鋼材のプレストレス力によるものだと推測する.また、 振動数には PC 鋼材切断の明確な影響がみられなかった.

5. 曲げモーメントに対する応答特性と振動特性の相関

曲げモーメントに対する応答特性と振動特性の相関関 係を Fig.7 に示す.全ての実験桁において,正の相関がみ られる.しかしながら,G2 では,前述の通り,損傷導入 後に振動数が上昇するような現象も見受けられるため, 今後,解析的に検討する.

6. 結論

本研究では,損傷が進展する PC 箱桁の振動数と消散エ ネルギーとポテンシャルエネルギーの比として定義した 曲げモーメントに対する応答特性に相関があることを明 らかにした.特に,曲げ2次モードにおける振動数の変 化によって耐荷特性を評価できる可能性を示した.

[参考文献] 1) Alena Bilosova: MODAL TESTING, 2011

2) 近藤洋佑,他3名:現地載荷実験に基づく PC 橋の橋梁性能および振動モニタリング,土木学会論文集 A2(応用力学), Vol. 75, No. 2, I 51-I 62, 2019.