第I部門 大きな径厚比を有するコンクリート充填ステンレス鋼管短柱の圧縮実験

神戸市立工業高等専門学校	学生員	○田村	悠人
神戸市立工業高等専門学校	正会員	上中知	宏二郎
大阪市立大学大学院	正会員	角掛	久雄

1. はじめに

コンクリート充填ステンレス鋼管(CFSST)部材とは、ス テンレス鋼管内にコンクリートを充填したものである。 CFSST は従来の普通鋼管を用いたコンクリート充填鋼管¹⁾ 部材(CFT)と比較して、防錆効果が高いことが大きな利点 である。また、国外において、Lam²⁾や Brian³⁾などの研究が 見られるが、これらの径厚比(*D/t*)の範囲は 19~101 であり、 橋脚に適用するためには大きな径厚比の CFSST の力学的 特性の解明が必要である。

本研究では、既報⁴と同じステンレス鋼管に、コンクリ ート強度を変化させた CFSST 短柱の中心圧縮特性に関す る実験を行い、径厚比が中心圧縮特性に与える影響につい て調べることを目的とする。

2. 実験方法

図-1 に載荷方法を示す。2MN アムスラー試験機を使用 し、球座、ロードセル、載荷板を介して、高さ H=450mm の CFSST 短柱に中心圧縮力を作用させ、終局状態に至る まで漸増載荷させた。載荷板の下に設置した4台の変位計 によって供試体の変形をそれぞれ測定した。なお、供試体 一覧を表-1に示す。

3. 実験結果と考察

(1)破壊形式

載荷終了後の ST10 の破壊状況を写真-1a), b)に示す。得 られた破壊形式は最大荷重に到達した後,上部のコンクリ ートのせん断破壊に伴うステンレス鋼管の座屈が発生し たことがわかる。またこれらの破壊形式は従来の CFT の 破壊形式や既報⁴の径厚比やコンクリート強度の異なる供 試体と同じものであった。

(2)中心圧縮強度

図-2 にステンレス鋼管が f_{02} に到達したときの降伏荷重 (N_y)と N_{est} の関係を示す。ここで、中心圧縮強度とは以下 の式より求めた。

a)ST10(1) b)ST10(2) 写真-1 破壊形式

$$N_{est} = A_c \cdot f_c + A_s \cdot f_v \tag{1}$$

ここで、 A_c :コンクリートの断面積、 f_c :コンクリートの圧 縮強度、 A_s :鋼管の断面積、 f_y :降伏応力であるが、ステンレ スでは 0.2%耐力(f_{02})を用いている。また、既報 4 の f_c '=15N/mm²の結果も併記している。同図より、相対比 N_{exp} / N_{est} =0.98 となり、 N_{est} を用いて N_y を概ね良好に評価できる ことが分かった。

さらに,降伏荷重と中心圧縮強度の相対比(*N_y*/*N_{est})と径厚 比(<i>D*/*t*)の関係を図-3 に示す。同じコンクリート強度で比較 してみると,径厚比が変化しても相対比への影響は小さい と考えられる。

表-1 供試体一覧

No.	供試体	ステンレス鋼管					コンクリート				
	名	D	t	A_s	D/t	f_{02}	f_u	f_c '	N_y	N_{exp}	N _{est}
		(mm)	(mm)	(mm ²)		(N/mm ²)	(N/mm ²)	(N/mm ²)	(kN)	(kN)	(kN)
1	ST08	158.8	0.7	333	238	220	567	44	703	1085	940
2	ST10(1)	159	0.8	416	190	261	586	56	995	1101	1210
3	ST10(2)	159	0.8	416	190	261	586	56	1103	1229	1210
4	ST15	159.1	1.5	752	106	276	558	44	1080	1207	1071
5	ST20	158.2	1.7	831	94	306	600	44	1082	1349	1108
6	ST30	157.1	2.7	1351	57	298	609	44	1070	1378	1229

(3)変形性能

図-4 に中心圧縮力と軸方向変位の関係を示す。ここで、 横軸は変位(δ)を供試体高(H=450mm)で除した値を百分率 で表している。同図より,ST08,ST10,ST15 は最後まで類 似した挙動を示していることがわかる。ST20 や ST30 も変 位が 0.5%までは類似した挙動を示しているが、それ以降 は中心圧縮力の低下が防止できている。

4. まとめ

1)得られた破壊形式は充填コンクリートのせん断破壊に 伴う鋼管の座屈であった。

2)算定中心圧縮強度と最大荷重,降伏荷重の関係は,降伏 荷重の方が精度よく評価しており,最大荷重は安全側に評 価した。

3)変形性能は径厚比が大きくなると、ステンレス鋼の拘束 効果が小さくなるため、変位が生じやすくなった。

4) コンクリートの圧縮強度(*f*_c)の違いによって相対比に 差が生じ, コンクリートの圧縮強度が小さいほど安全側に 評価した.

参考文献

 日本建築学会:コンクリート充填鋼管構造設計施工指針, 2008.
Lam, D. and Gardner, L: Structural Design of Stainless Steel Concrete Filled Columns, *Journal of Constructional Steel Research*, Elsevier, Vol. 64, pp. 1275-1282, 2008.

 Brian Uy, Zhong Tao and Han, L. H. : Behaviour of Short and Slender Concrete-filled Stainless Steel Tubular Columns, *Journal of Constructional Steel Research*, Elsevier, Vol. 67, pp. 360-378, 2011.
上中宏二郎: コンクリート充填ステンレス鋼管短柱の中心圧 縮特性に関する基礎実験, コンクリート工学年次論文集, Vol. 39, No. 2, 2017.

図-4 変形特性