第Ⅲ部門

液状化を考慮した地盤大変形解析への MPM の適用性に関する研究

京都大学大学院	学生会員	〇内山	大智
京都大学大学院	学生会員	広田	直哉
京都大学大学院	正会員	肥後	陽介

1. はじめに

地盤災害の被害低減のため効率的な対策を行うには, 精度のよい地盤解析技術の整備が重要である.近年さま ざまな数値解析手法が研究・提案されているが,本研究 で用いる MPM (Material Point Method)¹⁾は粒子法の一種で あり設定された計算格子内に連続体を有限個に分割した 粒子を配置して行う解析手法である.粒子法ではあるが, 計算格子を用いるため FEM に見られるメッシュの絡み 合いが生じず大変形問題に有効な手法と考えられる.本 研究では FEM 及び実験との比較から MPM における土 の液状化を含む大変形問題への適用性を検討した.

2. 解析手法

FEM 解析には砂の繰返し弾塑性構成式を用いた固液 連成動的有限要素法である LIQCA2D15³⁾を用いた. MPM 解析は構成式・支配方程式は LIQCA2D15 と同様 であり, 固液全体相の離散化は GIMP によって行った³⁾.

3. 一次元大変形問題における MPM の適用性検証

Zhang(2011)⁴は一次元弾性柱の有限変形圧縮問題として、自重による圧縮過程に対し以下の鉛直応力の理論解を示した.

$$\sigma(x) = \sigma(0) \frac{(1 - x/h_0) + \kappa(x/h_0)}{1 - \kappa(1 - \kappa)(x/h_0)}$$
$$\kappa = \frac{\sigma(0)}{2E} \quad \sigma(0) = \rho_0 b h_0$$

ここでxは原点からの鉛直距離, Eは剛性, ρ_0 は密度, bは重力加速度, h_0 は柱高さである. 今回 FEM による解析モデル図1及びMPM による解析モデル図2を用いて, 圧縮解析を行った.重力加速度は100G~300Gとした. 解析パラメータを表1に示す.

適用性検証の解析結果として各重力加速度における Zhangの理論解と FEM・MPM による解析結果の鉛直応 力 - 鉛直座標の関係を図3に示す.

Uchiyama Daichi, Hirota Naoya, and Higo Yosuke e-mail : uchiyama.daichi.54v@st.kyoto-u.ac.jp

図3.各重力加速度における鉛直座標と鉛直応力の関係(応力は圧縮が正)

本解析ではTotal Lagrangian 法に則った離散化を行ってい る.よって,ひずみ量を基準配置より計算しているため圧 縮の問題では大変形を伴うとひずみが過大に計算される. したがって FEM では鉛直変位が反転している部分が見 られる.一方 MPM では計算結果を一度粒子に投影し, 計算格子に戻すアルゴリズムを行うことにより Updated Lagrangian 法による有限変形理論と等価な解析手法とな り理論解とほぼ一致している.以上より,支配方程式の 定式化は FEM・MPM ともに微小ひずみを仮定しても, MPM はその解析アルゴリズムにより有限変形を解析可 能であることが確認された.

4. 動的遠心模型実験の再現解析

動的遠心模型実験(建設省土木研究所,2000)⁵⁰の実験ケ ース名 11-2 に対し FEM 解析モデル図 4 及び MPM 解析 モデル図 5 を作成し再現解析を行った.

2019年度土木学会関西支部年次学術講演会

解析モデルのサイズはプロトタイプのスケールで示して いる.また両解析手法ともに要素及び計算格子サイズは 1.0m四方の正方形を基本としている.解析パラメータは LIQCA2D15の4.2.2と同じものを用いた².また図6に 入力動を示す.

全ての層に繰返し弾塑性モデルを適用しており,入力動 はモデル底面の剛基盤入力とした.また計算時間増分 Δt は CFL 条件を満たすように 0.001[sec]とした.動的解析 時間は 50 秒である.実験結果メッシュ図を図7 に示す. また解析終了時である T=50.0s における FEM 及び MPM の過剰間隙水圧比 $\Delta u/\sigma'_{v0}$ の分布図を図8,図9 に示す. ここに Δu は過剰間隙水圧, σ'_{v0} は初期の鉛直有効応力で あり $\Delta u/\sigma'_{v0}$ が 1.0 に近づくほど液状化の進行を表してい る.

図7と比較すると概形から MPM の解析結果が近いと いえる.黒丸で示した部分にあるように,FEM では法尻 付近の基礎地盤が大きく変形し地表面に隆起している. また FEM と MPM で過剰間隙水圧の消散過程に違いが 見られることが白丸よりわかる.

5. まとめ

一次元大変形問題において MPM の解析結果は理論解 と概ね一致しており、定式化が微小変形理論でありなが ら大変形を解析可能であることを確認した.

二次元においては実験の解析モデル化や材料パラメ ータの設定,初期条件の再現など MPM を定量的に評価 するには厳密性を欠く部分があったため今回は定性評価 にとどめた.今後は MPM の定量的な評価のため解析条 件の設定などを実験と照らし合わせ厳密に行い,実験結 果や FEM の解析結果との定量的な比較が必要である.

参考文献

1) Sulsky, D., Chen, Z. and Schreyer, H.L.: A particle method for history-dependent materials, *Comput. Methods Appl. Engrg.*, **118**, pp.179-196, 1994., 2) 液状化解析手法 LIQCA 開発グ ループ: LIQCA2D15 (2015年公開版) 資料., 3) Higo, Y., Nishimura, D., Oka, F., : Dynamic analysis of unsaturated embankment considering the seepage flow by a GIMP-FDM coupled method. *Computer Methods and Recent Advances in Geomechanics*, Oka, Murakami, Uzuoka and Kimoto (Eds.), pp.1761-1766, 2015., 4) Zhang, D.Z., Ma, X. and Giguere, P.T.: Material point method enhanced by modified gradient of shape function, *Journal of Computational Physics*, **230**, pp.6379-6398, 2011., 5) 建設省土木研究所耐震技術研究センター動土質 研究室: 法先固化改良による盛土の耐震対策効果に関 する動的遠心模型実験報告書, 土木研究所資料第3688号, 2000.