第 I 部門 ニエ重鋼管・軽量コンクリート充填合成短柱の圧縮特性

神戸市立工業高等専門学校	学生員	○森﨑	智哉
神戸市立工業高等専門学校	正会員	上中知	宏二郎
神戸市立工業高等専門学校	正会員	水越	睦視
神戸市立工業高等専門学校	正会員	酒造	敏廣

1. はじめに

二重鋼管・コンクリート合成(CFDST)部材とは,直径の 異なる二種類の鋼管を同心円上に配置して,その両者の みにコンクリートを充填した構造物を指す(図-1 参照). このような形状により,従来のコンクリート充填鋼管 (CFT)部材¹⁾と比較して,内鋼管内部が空洞となるため軽 量となる利点を有する.一方,軽量コンクリート²⁾は従来 のコンクリートと比較して 20%程度の軽量化が可能であ る.本研究では,CFDST に軽量コンクリート二種(LC2)を 充填した CFDST(以下,L-CFDST)短柱部材の基本特性の 把握を目的とした中心圧縮特性に関する基礎的検討を行 った.

2. 実験方法

2.1 供試体の概要

充填材料には最も軽量化が見込まれる粗骨材,ならび に細骨材を膨張頁岩とした軽量コンクリート 2 種(LC2) を用いた. その配合表は表-1 に示すとおりである.

表-2 に供試体一覧を示す.外鋼管径(D_o)は 160mm, な らびに供試体高さ H=450mm と鋼管厚(t_o, t_i)は 1.0mm とし ている. 内鋼管径(D_i)は 0(CFT), 38, 75, ならびに 113mm としている. したがって, 内径・外形比の範囲は 0.0< D_i / D_o <0.7 となる.

2.2 測定項目

内外鋼管外側中心部に2軸ひずみゲージを南北方向に それぞれ添付した.さらに,供試体上部には変位計を3台 設置して軸方向変形を測定した.載荷状態を図-2に示す.

3. 実験結果と考察

3.1 破壊形式

図-3 に載荷終了後の供試体を示す.内径・外形比(D_i/ D_o)が 0.47 以下であれば,図-3(a)に示す充填コンクリー トのせん断破壊に伴う鋼管の局部座屈が見られた.一方, Outer steel tube t_o Filled t_o Filled t_o Filled t_o Filled t_o Filled t_o Filled t_o For the steel tube b_o b_o b_o b_o b_o b_o b_o b_o b_o c_o c_o c_o

表-1 LC2の配合表(kg/m³)

<i>W/C</i>	s/a	W	С	S	G
55%	0.48	165	300	635	591

Tomoya MORISAKI, Kojiro UENAKA, Mutsumi MIZUKOSHI and Toshihiro MIKI Email: r114538@g.kobe-kosen.ac.jp

No.	Tag	D_o	D_i	t_o, t_i	D_i	D _o	f_y	f_c '	N_{so}	N_{si}	N_{c}	N_{est}	N_{exp}	N _{exp}
		(mm)	(mm)	(mm)	D_{o}	t _o	(N/mm^2)	(N/mm^2)	(kN)	(kN)	(kN)	(kN)	(kN)	N _{est}
1	L10-000	160.0	0.0	-	0.0	160.0	266.0	36.4	132.9	0.0	714.0	846.8	811.7	0.96
2	L10-038		38.0	1.0	0.2				132.9	30.9	672.7	836.5	676.3	0.81
3	L10-075		75.0	1.0	0.5				132.9	61.8	553.1	747.8	546.3	0.73
4	L10-113		113.0	1.0	0.7				132.9	93.6	348.8	575.2	342.2	0.59

表-2 供試体の概要と実験結果

内鋼管においては、せん断面に沿って内鋼管がらせん階段 状に局部座屈を起こしていた(図-3(b)参照). これは、既報 ³⁾で見られた普通コンクリートを充填した CFDST(N-CFDST)で見られたものと同じであった. 一方、断面積が最 小の内鋼管が一番大きいもの(L10-113)では、図-3(c)に示 すような端部で破壊する Elephant-foot 座屈が見られた.

3.2 中心圧縮強度

図-5 に中心圧縮強度と内径・外形比(*Di*/*Do*)の関係を示す. 図中 *N*est とは以下の式より求めている.

 $N_{est} = N_{so} + N_{si} + N_c = (A_{so} + A_{si})f_y + A_c f_c$ ' (1) ここで, A_{si}, A_{so}, A_c : 内外鋼管, 充填コンクリートの断面積, f_y : 鋼管の降伏強度, f_c ':コンクリート強度である.

同図より, D_l/D_oが大きくなると中心圧縮強度比(N_{exp}/ N_{est}) は低下する傾向がみられる.これは, 鋼管の拘束効果 が低下したものであると推察される.なお,この傾向は既 報³で行った普通コンクリートで行った同形状の CFDST のものと同じものであった.

3.3 変形特性

図−4 に中心圧縮力(*N/N*_u)と軸方向変位(*δH*)の関係を示 す.同図より,初期剛性の差異はほとんど見られないもの の,*D*_i/*D*_oが大きくなると変形性能は若干低下した.

4. まとめ

本研究で得られた事項を列記すると以下の通りである.

- (1) 得られた破壊形式は充填コンクリートのせん断に伴う 鋼管の局部座屈であった.一方,内鋼管が一番大きなも のは,端部で Elephant-foot の座屈が見られた.
- (2) 内径外形比(D_i/D_o)が大きくなると、中心圧縮強度比
 (N_{exp}/N_{est})は低下した.
- (3)得られた中心圧縮力と変位の関係より、内径・外形比 (D_i/D_o)が大きくなると変形性能は低下した.

謝辞:載荷実験の実施の際は,神戸市立工業高等専門学校 都市工学科に在籍された学生諸君にご協力をいただきま した.また,本研究はJSPS 科研費(課題番号:18K04338)の

助成を受けたものです.ここに記して感謝いたします. 参考文献

1)日本建築学会:コンクリート充填鋼管設計施工指針,2008. 2)笠井編:軽量コンクリート,技術書院,pp.71-87,2002. 3)Uenaka, K. et al.: *Thin-Walled Structures*, Elsevier, 48(1),19-24,2010.