第Ⅱ部門

京都大学工学部	学生員	○伊賀	修平
京都大学工学研究科	正会員	原田	英治
京都大学工学研究科	正会員	五十里	洋行
京都大学工学研究科	正会員	後藤	仁志

1. はじめに

津波襲来時には、防波堤越流時に形成される落下流 に起因した防波堤マウンド洗掘がケーソン防波堤倒壊 の大きな要因となる.落下流によるマウンド洗掘過程 の数値シミュレーションを行い、別途実施した模型実 験結果と比較することで三次元数値モデルの妥当性を 検討する.

2. 実験概要

ポンプによってケーソンの下流側の水を上流側へ 循環させることで一方向流れをケーソン防波堤の模型 に作用させる.マウンドには,砕石よりも密度の小さ いデルリン球を用いた.実験の模式図および実験条件 を図-1,表-1に示す.単位幅流量は限界水深から算出し た.また,数値シミュレーションでは負圧を考慮して いないため,落下流とケーソンの間にポイントゲージ を挿入し空気を含ませることで付着ナップを解消した.

3. 計算手法

本研究では固相と液相を異なる離散空間で解く,オ ーバーラップ型の固液混相型 DEM-MPS 法をもちいた. 液相と固相の相互作用に関しては松藤¹⁾を参考に抗力 で与えた.

(1) 液相計算手法

流体計算には MPS-HS-HL-ECS-GC-DS 法 ²⁾を用いた. 重み関数には, Wendland 型関数を使用した. 運動方程 式は下記のとおりである.

$$\frac{D\boldsymbol{u}_l}{Dt} = -\frac{1}{\rho}\nabla p + \nu\nabla^2 \boldsymbol{u}_l + \boldsymbol{g} + \delta \frac{\boldsymbol{R}}{\rho} \qquad (1)$$

$$\frac{\mathbf{R}}{\rho} = -a\mathbf{u} - b\mathbf{u}|\mathbf{u}| \tag{2}$$

$$\begin{cases} a = \alpha \frac{n_w \nu}{K} \\ b = \beta \frac{n_w}{\sqrt{K}} \\ K = \frac{n_w^3 d_{50}^2}{(1 - n_w)^2} \end{cases} \begin{cases} \alpha = 150 \\ \beta = \frac{1.75}{\sqrt{n_w^3}} \end{cases}$$
(3)

ここに、 δ : Dirac のデルタ関数, **R**:マウンドから受ける抗力(Forchhemier の式³), n_w :マウンド間隙率, d_{50} :マウンド中央粒径(本研究では $d_{50} = d_s$)である.下付き添え字 *s*, *l*はそれぞれ固相,液相の物理量を表す.式(3)の α , β は実験的に求められる値である⁴.

(2) 固相計算手法

後藤 5を参考にした下記の運動方程式を用いた.

$$(\rho C_M + \sigma) A_3 d_3^3 \frac{d u_s}{d t} = F_{drag} + F_{accel} + F_g + F_{colp} \quad (4)$$

$$\mathbf{F}_{drag} = \frac{1}{2} c_D \rho A_2 a_s^2 |\mathbf{u}_l - \mathbf{u}_s| (\mathbf{u}_l - \mathbf{u}_s) \qquad (5)$$
$$d\mathbf{u}$$

$$F_{accel} = \rho (1 + C_M) A_3 d_s^3 \frac{du}{dt}$$
(6)

$$\mathbf{F}_g = (\sigma - \rho) A_3 d_s^3 g \tag{7}$$

ここに、 σ :比重 (ρ_s/ρ_l)、 C_M :付加質量、 F_{drag} :DEM 粒子に作用する流体抗力、 F_{accel} :付加質量の加速によ る力、 F_g :浮力と重力の合力、 F_{colp} :固相粒子間衝突 力、 C_D :抗力係数、 A_2, A_3 :固相粒子の2次元形状係 数、3次元形状係数、 d_s :固相粒径、 ν :動粘性係数、 である.式(5)での相対速度の推定には異相の空間平均 速度を用いた。

表-1 実験条件

デルリン球粒径	0.01(m)	
デルリン球密度	1.36×10 ³ (kg/m ³)	
水路幅	0.4(m)	
初期水深	0.4(m)	
限界水深	3.0×10 ⁻² (m)	
単位幅流量	1.63×10 ⁻² (m ³ /s)	

Shuhei IGA, Eiji HARADA, Hiroyuki IKARI and Hitoshi GOTOH iga.shuuhei.74x@st.kyoto-u.ac.jp

太-2 水理采件				
	実験	解析		
下流側水深(m)	3.65×10^{-1}	3.65×10^{-1}		
越流水深(m)	2.0×10^{-2}	2.7×10^{-2}		
流速(m/sec)	8.1×10 ⁻¹	6.3×10 ⁻¹		

4. 実験と数値シミュレーションの比較

(1)水理条件の比較

数値シミュレーションの計算領域を図-2に示す.本 研究では数値シミュレーションの下流側水深と流入流 量を実験と一致させ、 越流水深と越流水深位置におけ る流速を合わせることを目標とした(表-2).しかしな がら、本計算では越流水深 3cm に対して粒径 1cm の 水粒子を用いて計算を行っており、解像度が不十分で あるため、厳密に条件を一致させることは難しい、今 後,計算の高速化による高解像度計算が必要となる. (2)洗掘形状の比較

実験と数値シミュレーションでは落下流が定常とな る時刻が異なるため、実験の11秒時点と数値シミュ レーションの5秒時点を比較開始時刻として洗掘形状 を比較する(図-3). 最大洗掘深や洗掘進行速度はほぼ 一致しており、速度ベクトル図では洗掘孔内部に時計 回りの渦が確認できる(図-4).数値シミュレーション でも実験同様、渦によって巻きあげられた DEM 粒子 が洗掘孔の下流側に堆積し、ある一定以上になると滑 落するサイクルが生じる.一方で、実験の撮影角度を 考慮しても洗掘孔の位置が大きくずれてしまっている. 原因としては、解析のナップ流入角度がケーソン下流 側にわずかにずれていることが考えられる. これは表 面張力に加え、負圧の影響によるものであると推察さ れる. さらに,洗掘孔より下流側の領域について,図 -3 より実験と比較して解析ではマウンド粒子がより 流下方向に流されている. これは下流領域の流速が大 きいためであると推察される. すなわち低解像度のた め間隙流の再現性が低く、DEM からの抗力が過剰評 価され、DEM が壁のように働いているためであると 考えられる. 高解像度計算による間隙流のより正確な 再現が今後の課題である.

5. おわりに

防波堤越流に伴う防波堤マウンド洗掘現象につい て数値シミュレーションを実施し,別途実施した実験

20 4060 80 (cm)

図-4 50s 時点の速度ベクトル図

との比較を通して数値モデルの精度を検証した.時間 経過に伴う洗掘形状の遷移や、最大洗掘深に関しては 妥当性が確認された一方で、洗掘孔の位置ならびに堆 積層の形状について不一致が見られた. 負圧の影響の より厳密な評価、ならびに並列化の導入による高解像 度計算が今後の課題である.

参考文献

0

- 松藤慶之:津波越流洗掘によるケーソン防波堤捨 1) 石マウンド崩壊過程の基礎的研究, 京都大学大学 院工学研究科 修士論文, 2016.
- 後藤仁志:粒子法―連続体・混相流・粒状体のた 2) めの計算科学, 森北出版, pp.289, 2018.
- 吉岡真弓,登坂博行:高透水性多孔質体中の非ダ 3) ルシー流れに関する考察,地下水学会誌,第52巻 第3号, 275-284, 2010.
- 4) G. Pahar and A. Dhar: Modeling free-surface flow in porous media with modified Incompressible SPH, Engineering Analysis with Boundary Elements, Vol.68, pp.75-85, 2016.
- 5) 後藤仁志:数値流砂水理学―粒子法による混相流 と粒状態の計算力学, 森北出版, pp.223.2004.