第 I 部門 都市気象 LES モデルと境界層レーダーを用いた大気境界層を突破する熱的上昇流の発見

京都大学工学部	学生員	○小西	大	京都大学防災研究所	正会員	山口	弘誠
京都大学防災研究所	正会員	中北	英一	京都大学院工学研究科	学生員	土橋	知紘

1. 背景と目的

近年都市における局地的豪雨(ゲリラ豪雨)は 時間・空間スケールの小ささから予測が困難で, 都市に重大な被害をもたらしており,積乱雲発生 初期の段階である豪雨のタマゴに焦点を当てた研 究・観測が行われてきた.その研究の新たな段階 として,積乱雲の発生する前のステージが新たな 着眼点となっている.都市における熱的上昇流が どのような条件で境界層を突破し積雲を生成する かを解析し,ゲリラ豪雨の解明に繋げていく.本 研究は山口ら(2016)が開発した都市気象 LES モ デルを用いて熱的上昇流が境界層を突破する要因 解析を目的とし,上昇流を観測可能な境界層レー ダーによる検証を行う.

2. モデルの概要

上昇流をモデルで捉える為には都市の建物群の 形状をできるだけ陽に解像し、上昇流と渦の関係 や建物群から生じる乱れの効果を詳細に解ける乱 流モデルを用い、また都市キャノピー内部から積 雲が生成する境界層上空までシームレスに扱える ことが必要となる.開発したモデルの概要は以下 のようになっている.(表1)

基礎方程式系	非静力準圧縮系
予報変数	uvwp Өqvqcqr
座標系	直角直交座標系
計算格子	スタッガード格子
離散化法	有限差分法 (FAVOR法)
時間離散化法	2次精度Adams-Bashforth法
空間離散化法	2次精度中心差分 移流項∶3次精度風上差分
音波の扱い	HE-VI法
SGSモデル	Smagorinsky-Lilly(Smagorinsky, 1963;Lilly, 1966)
境界条件	側方:周期, 勾配なし, free-slip, 放射 上空:free-slip
壁面の取り扱い	バルク(Louis,1979)
雲物理モデル	暖かい雨のバルク(Kessler, 1969)

表 1:LES モデルの概要

3. 境界層レーダーの概要

今年度神戸市長田区に設置した LQ-7 という小型 のウィンドプロファイラーレーダー(WPR)を使用 する.中心周波数が1357.5MHzでアンテナはアク ティブフェーズドアレイを使用する.この小型の WPRにより対流圏下層の風速・風向をリアルタイ ムで3次元的に捉える事ができる.大気境界層か らその上空までを包括的に扱える事により境界層 を突破する上昇流の観測が可能となった.

4. 解析

4.1 計算条件

今回の解析対象は夏季晴天日且つ境界層レーダ ー周辺に積雲が生成していた日とし、2017年8月 18日12時を初期値として計算を開始した.格子 数は東西(x方向),南北(y方向),鉛直方向(z 方向)の順に198×298×100で最上端が4871mであ る.格子間隔は東西南北に60m,鉛直方向に4~60m であり,高解像度である事から熱的上昇流1つ1 つを捉える事ができる.境界条件は東西がfree-slip, 南側が流入境界,北側が放射境界とした.初期値に ついては気象庁 MSM-GPV のデータを空間平均し, 南北風,温位,水蒸気混合比を水平一様に与える.都 市における熱的効果の表現は人工土地被覆の効果 と人工排熱の効果が考慮されている.

4.2 境界層高度の推定

始めに熱的上昇流が境界層を突破するかの議論 をするために、境界層の高度推定を行った..境界 層の特徴として,乱流が卓越する事と日中の境界 層の高度変化する事が挙げられる.境界層の特徴 から特に温位と乱流エネルギーから境界層高度推 定を行うが、本研究で都市における境界層高度は 計算開始から1時間後からは1.2km であった事か ら、境界層高度を1.2kmと推定した.

4.2 境界層レーダーとの比較

図1に示すようにレーダーとモデルによる計算 結果を比較する.赤で示す上昇流と青で示す下降 流が交互に見られる事や,境界層を突破した熱的 上昇流が上手く捉える事ができ,モデルの妥当性

Dai KONISHI, Kosei YAMAGUCHI, Eiichi NAKAKITA, Tomohiro TSUCHIHASHI konishi.dai.38e@st.kyoto-u.ac.jp

を評価できた.

4.3 境界層を突破する熱的上昇流

次に境界層レーダー周辺の都市域に着目し,境 界層を突破する熱的上昇流の特徴を捉える.本研 究では突破した2つのケースを発見した.ケース 1 では図 2 に示すように青丸で示す熱的上昇流が 強い熱的浮力を持っていた. 強い熱的浮力によっ て他の熱的上昇流よりもより高い高度まで熱的上 昇流が到達したと考える.また,別事例において, 下層における熱的上昇流の組織化が見られ、熱的 浮力の大きくなる要因の1つと考える.ケース2 では、図3に示すように黒丸で示す先行する熱的 上昇流が上層に存在する温位勾配の大きな安定層 を解消し、青丸で示す後続の熱的上昇流がその隙 間を通って境界層を突破した.よって狭い範囲で 高頻度で発生した事による空間・時間スケールに 左右される事が明らかとなった. つまり, 熱的上 昇流が境界層を突破する要因は熱的浮力という内 的要因と, 組織化や別の熱的上昇流による安定層 という外的要因が存在する事が分かった.

4.4 渦管解析

境界層を突破する熱的上昇流に関して渦管の解 析を行った.ケース1では大きな鉛直渦度は見ら れず,ケース2では大きな鉛直渦度が見られた. この事から熱的浮力と渦度の強さの関係が示唆さ れた.また,場の風速の鉛直シアが高度0.1kmか ら0.6kmでは負,高度0.6kmでは正であり正負が 逆である事から,水平渦管の回転の方向が逆にな り,その結果図4に示すように水平渦管が熱的上 昇流によって立ち上げられて形成された正負の立 ち位置の異なる鉛直渦管が2つ見られた.

5. 結論

本研究では都市気象 LES モデルと境界層レーダ ーによって熱的上昇流が境界層を突破する要因の 解析を行った.レーダーと比較して境界層を突破 する熱的上昇流の再現が再現でき,モデルの妥当 性が評価できた.そして境界層を突破する要因と して強い熱的浮力と先行する熱的上昇流による安 定層の解消の2つがみられた.また渦管解析に関 して,先行研究では風速の鉛直シアが下層で正, 上層でゼロという理想的な条件で解析を行ったた め,正負の立ち位置が同じ鉛直渦管のペアしか見 られなかったが、本研究では風速の鉛直シアが高 度毎に異なる事から立ち位置が逆になる鉛直渦管 のペアが見られた.

図4: 左図が鉛直渦度の鉛直断面,右図がその模式図

[km]

5 5

6

6.5 東 0.021

参考文献:山口弘誠・高見和弥・井上実・中北英一, 豪雨の「種」を捉えるための都市効果を考慮する LES 気象モデルの開発,土木学会論文集, B1(水工 学), 第72巻, pp.205-210, 2016.3.